當前位置: 首頁>>代碼示例>>Python>>正文


Python dnn.dnn_available方法代碼示例

本文整理匯總了Python中theano.sandbox.cuda.dnn.dnn_available方法的典型用法代碼示例。如果您正苦於以下問題:Python dnn.dnn_available方法的具體用法?Python dnn.dnn_available怎麽用?Python dnn.dnn_available使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.sandbox.cuda.dnn的用法示例。


在下文中一共展示了dnn.dnn_available方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_old_pool_interface

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_old_pool_interface():
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)
    testfile_dir = os.path.dirname(os.path.realpath(__file__))
    fname = 'old_pool_interface.pkl'
    with open(os.path.join(testfile_dir, fname), 'rb') as fp:
        try:
            pickle.load(fp)
        except ImportError:
            # Windows sometimes fail with nonsensical errors like:
            #   ImportError: No module named type
            #   ImportError: No module named copy_reg
            # when "type" and "copy_reg" are builtin modules.
            if sys.platform == 'win32':
                exc_type, exc_value, exc_trace = sys.exc_info()
                reraise(SkipTest, exc_value, exc_trace)
            raise 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_dnn.py

示例2: test_dnn_conv_merge_mouts

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_dnn_conv_merge_mouts():
    # make sure it doesn't attempt to output/alpha merge a convolution
    # that has multiple clients.
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)
    img = T.ftensor4()
    kern = T.ftensor4()
    out = T.ftensor4()

    conv = dnn.dnn_conv(img, kern)

    lr = numpy.asarray(0.05, dtype='float32')

    if cuda.dnn.version() == -1:
        # Can't merge alpha with cudnn v1
        fr = conv + out
    else:
        fr = lr * (conv + out)
    rr = conv * lr

    f = theano.function([img, kern, out], [fr, rr], mode=mode_with_gpu)
    convs = [n for n in f.maker.fgraph.toposort()
             if isinstance(n.op, dnn.GpuDnnConv)]
    assert len(convs) == 1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_dnn.py

示例3: test_dnn_conv_merge_broad

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_dnn_conv_merge_broad():
    # Make sure that we don't apply output_merge on broadcasted values.
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)
    img = T.ftensor4()
    kern = T.ftensor4()

    conv = dnn.dnn_conv(img, kern)

    lr = numpy.asarray(0.05, dtype='float32')

    # this does broadcasting
    fr = conv + lr

    f = theano.function([img, kern], [fr])
    convs = [n for n in f.maker.fgraph.toposort()
             if isinstance(n.op, dnn.GpuDnnConv)]
    assert len(convs) == 1
    conv = convs[0]
    # Assert output was not merged
    assert isinstance(conv.inputs[2].owner.op, GpuAllocEmpty) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_dnn.py

示例4: get_output_for

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def get_output_for(self, input, *args, **kwargs):
        if not dnn_available:
            raise RuntimeError("cudnn is not available.")
        # by default we assume 'cross', consistent with earlier versions of conv2d.
        conv_mode = 'conv' if self.flip_filters else 'cross'
        # if 'border_mode' is one of 'valid' or 'full' use that.
        # else use pad directly.
        border_mode = self.border_mode if (self.border_mode is not None) else self.pad

        conved = dnn.dnn_conv(img=input,
                              kerns=self.W,
                              subsample=self.strides,
                              border_mode=border_mode,
                              conv_mode=conv_mode
                              )

        if self.b is None:
            activation = conved
        elif self.untie_biases:
            activation = conved + self.b.dimshuffle('x', 0, 1, 2)
        else:
            activation = conved + self.b.dimshuffle('x', 0, 'x', 'x')
        return self.nonlinearity(activation) 
開發者ID:benanne,項目名稱:kaggle-ndsb,代碼行數:25,代碼來源:tmp_dnn.py

示例5: setUp

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def setUp(self):
        """
        Set up a test image and filter to re-use.
        """
        skip_if_no_gpu()
        if not dnn_available():
            raise SkipTest('Skipping tests cause cudnn is not available')
        self.orig_floatX = theano.config.floatX
        theano.config.floatX = 'float32'
        self.image = np.random.rand(1, 1, 3, 3).astype(theano.config.floatX)
        self.image_tensor = tensor.tensor4()
        self.input_space = Conv2DSpace((3, 3), 1, axes=('b', 'c', 0, 1))
        self.filters_values = np.ones(
            (1, 1, 2, 2), dtype=theano.config.floatX
        )
        self.filters = sharedX(self.filters_values, name='filters')
        self.batch_size = 1

        self.cudnn2d = Cudnn2D(self.filters, self.batch_size, self.input_space) 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:21,代碼來源:test_cudnn.py

示例6: get_output

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def get_output(self, train=False):
        X = self.get_input(train)
        newshape = (X.shape[0]*X.shape[1], X.shape[2], X.shape[3], X.shape[4])
        Y = theano.tensor.reshape(X, newshape) #collapse num_samples and num_timesteps
        border_mode = self.border_mode
        if on_gpu() and dnn.dnn_available():
            if border_mode == 'same':
                assert(self.subsample == (1, 1))
                pad_x = (self.nb_row - self.subsample[0]) // 2
                pad_y = (self.nb_col - self.subsample[1]) // 2
                conv_out = dnn.dnn_conv(img=Y,
                                        kerns=self.W,
                                        border_mode=(pad_x, pad_y))
            else:
                conv_out = dnn.dnn_conv(img=Y,
                                        kerns=self.W,
                                        border_mode=border_mode,
                                        subsample=self.subsample)
        else:
            if border_mode == 'same':
                border_mode = 'full'

            conv_out = theano.tensor.nnet.conv.conv2d(Y, self.W,
                border_mode=border_mode, subsample=self.subsample)

            if self.border_mode == 'same':
                shift_x = (self.nb_row - 1) // 2
                shift_y = (self.nb_col - 1) // 2
                conv_out = conv_out[:, :, shift_x:Y.shape[2] + shift_x, shift_y:Y.shape[3] + shift_y]

        output = self.activation(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        newshape = (X.shape[0], X.shape[1], output.shape[1], output.shape[2], output.shape[3])
        return theano.tensor.reshape(output, newshape) 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:35,代碼來源:convolutions.py

示例7: test_dnn_conv_desc_merge

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_dnn_conv_desc_merge():
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)
    img_shp = T.as_tensor_variable(
        numpy.asarray([2, 1, 8, 8]).astype('int64'))
    kern_shp = T.as_tensor_variable(
        numpy.asarray([3, 1, 2, 2]).astype('int64'))
    desc1 = dnn.GpuDnnConvDesc(border_mode='valid', subsample=(2, 2),
                               conv_mode='conv')(img_shp, kern_shp)
    desc2 = dnn.GpuDnnConvDesc(border_mode='full', subsample=(1, 1),
                               conv_mode='cross')(img_shp, kern_shp)
    # CDataType is not DeepCopyable so this will crash if we don't use
    # borrow=True
    f = theano.function([], [theano.Out(desc1, borrow=True),
                             theano.Out(desc2, borrow=True)],
                        mode=mode_with_gpu)

    d1, d2 = f()

    # This will be the case if they are merged, which would be bad.
    assert d1 != d2

    desc1v2 = dnn.GpuDnnConvDesc(border_mode='valid', subsample=(2, 2),
                                 conv_mode='conv')(img_shp, kern_shp)
    f = theano.function([], [theano.Out(desc1, borrow=True),
                             theano.Out(desc1v2, borrow=True)],
                        mode=mode_with_gpu)
    assert len([n for n in f.maker.fgraph.apply_nodes
                if isinstance(n.op, dnn.GpuDnnConvDesc)]) == 1

    # CDATA type don't equal even if they represent the same object
    # So we can't use debugmode with it.
    if theano.config.mode not in ["DebugMode", "DEBUG_MODE"]:
        d1, d2 = f()

        # They won't be equal if they aren't merged.
        assert d1 == d2 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:39,代碼來源:test_dnn.py

示例8: test_dnn_conv_merge

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_dnn_conv_merge():
    """This test that we merge correctly multiple dnn_conv.

    This can is more difficult due to GpuEmptyAlloc that aren't
    merged.

    """
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)
    img_shp = [2, 5, 6, 8]
    kern_shp = [3, 5, 5, 6]
    img = T.ftensor4('img')
    kern = T.ftensor4('kern')
    out = T.ftensor4('out')
    desc = dnn.GpuDnnConvDesc(
        border_mode='valid')(img.shape, kern.shape)

    # Test forward op
    o1 = dnn.dnn_conv(img, kern)
    o2 = dnn.dnn_conv(img, kern)
    f = theano.function([img, kern], [o1, o2], mode=mode_with_gpu)
    d1, d2 = f(numpy.random.rand(*img_shp).astype('float32'),
               numpy.random.rand(*kern_shp).astype('float32'))
    topo = f.maker.fgraph.toposort()
    assert len([n for n in topo if isinstance(n.op, dnn.GpuDnnConv)]) == 1

    # Test grad w op
    o1 = dnn.GpuDnnConvGradW()(img, kern, out, desc)
    o2 = dnn.GpuDnnConvGradW()(img, kern, out, desc)
    f = theano.function([img, kern, out], [o1, o2], mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len([n for n in topo if isinstance(n.op, dnn.GpuDnnConvGradW)]) == 1

    # Test grad i op
    o1 = dnn.GpuDnnConvGradI()(img, kern, out, desc)
    o2 = dnn.GpuDnnConvGradI()(img, kern, out, desc)
    f = theano.function([img, kern, out], [o1, o2], mode=mode_with_gpu)
    topo = f.maker.fgraph.toposort()
    assert len([n for n in topo if isinstance(n.op, dnn.GpuDnnConvGradI)]) == 1 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:41,代碼來源:test_dnn.py

示例9: setUp

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def setUp(self):
        if not cuda.dnn.dnn_available():
            raise SkipTest(cuda.dnn.dnn_available.msg)
        utt.seed_rng() 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:6,代碼來源:test_dnn.py

示例10: test_dnn_tag

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_dnn_tag():
    """
    Test that if cudnn isn't avail we crash and that if it is avail, we use it.
    """
    x = T.ftensor4()
    old = theano.config.on_opt_error
    theano.config.on_opt_error = "raise"

    sio = StringIO()
    handler = logging.StreamHandler(sio)
    logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler)
    # Silence original handler when intentionnally generating warning messages
    logging.getLogger('theano').removeHandler(theano.logging_default_handler)
    raised = False
    try:
        f = theano.function(
            [x],
            pool_2d(x, ds=(2, 2), ignore_border=True),
            mode=mode_with_gpu.including("cudnn"))
    except (AssertionError, RuntimeError):
        assert not cuda.dnn.dnn_available()
        raised = True
    finally:
        theano.config.on_opt_error = old
        logging.getLogger(
            'theano.compile.tests.test_dnn').removeHandler(handler)
        logging.getLogger('theano').addHandler(theano.logging_default_handler)

    if not raised:
        assert cuda.dnn.dnn_available()
        assert any([isinstance(n.op, cuda.dnn.GpuDnnPool)
                    for n in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:34,代碼來源:test_dnn.py

示例11: test_softmax

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_softmax(self):
        if not dnn.dnn_available():
            raise SkipTest(dnn.dnn_available.msg)
        t = T.ftensor4('t')
        rand_tensor = numpy.asarray(
            numpy.random.rand(5, 4, 3, 2),
            dtype='float32'
        )
        self._compile_and_check(
            [t],
            [dnn.GpuDnnSoftmax('bc01', 'accurate', 'channel')(t)],
            [rand_tensor],
            dnn.GpuDnnSoftmax
        )

        self._compile_and_check(
            [t],
            [
                T.grad(
                    dnn.GpuDnnSoftmax(
                        'bc01',
                        'accurate',
                        'channel'
                    )(t).mean(),
                    t
                )
            ],
            [rand_tensor],
            dnn.GpuDnnSoftmaxGrad
        ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:32,代碼來源:test_dnn.py

示例12: test_conv

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_conv(self):
        if not dnn.dnn_available():
            raise SkipTest(dnn.dnn_available.msg)
        img = T.ftensor4('img')
        kerns = T.ftensor4('kerns')
        out = T.ftensor4('out')
        img_val = numpy.asarray(
            numpy.random.rand(10, 2, 6, 4),
            dtype='float32'
        )
        kern_vals = numpy.asarray(
            numpy.random.rand(8, 2, 4, 3),
            dtype='float32'
        )

        for params in product(
            ['valid', 'full', 'half'],
            [(1, 1), (2, 2)],
            ['conv', 'cross']
        ):
            out_vals = numpy.zeros(
                dnn.GpuDnnConv.get_out_shape(img_val.shape, kern_vals.shape,
                                             border_mode=params[0],
                                             subsample=params[1]),
                dtype='float32')
            desc = dnn.GpuDnnConvDesc(
                border_mode=params[0],
                subsample=params[1],
                conv_mode=params[2]
            )(img.shape, kerns.shape)
            conv = dnn.GpuDnnConv()(img, kerns, out, desc)
            self._compile_and_check(
                [img, kerns, out],
                [conv],
                [img_val, kern_vals, out_vals],
                dnn.GpuDnnConv
            ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:39,代碼來源:test_dnn.py

示例13: test_conv3d

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_conv3d(self):
        if not (cuda.dnn.dnn_available() and dnn.version() >= (2000, 2000)):
            raise SkipTest('"CuDNN 3D convolution requires CuDNN v2')
        ftensor5 = T.TensorType(dtype="float32", broadcastable=(False,) * 5)
        img = ftensor5('img')
        kerns = ftensor5('kerns')
        out = ftensor5('out')
        img_val = numpy.asarray(
            numpy.random.rand(10, 2, 6, 4, 11),
            dtype='float32'
        )
        kern_vals = numpy.asarray(
            numpy.random.rand(8, 2, 4, 3, 1),
            dtype='float32'
        )

        for params in product(
            ['valid', 'full', 'half'],
            [(1, 1, 1), (2, 2, 2)],
            ['conv', 'cross']
        ):
            out_vals = numpy.zeros(
                dnn.GpuDnnConv3d.get_out_shape(img_val.shape, kern_vals.shape,
                                               border_mode=params[0],
                                               subsample=params[1]),
                dtype='float32')
            desc = dnn.GpuDnnConvDesc(
                border_mode=params[0],
                subsample=params[1],
                conv_mode=params[2]
            )(img.shape, kerns.shape)
            conv = dnn.GpuDnnConv3d()(img, kerns, out, desc)
            self._compile_and_check(
                [img, kerns, out],
                [conv],
                [img_val, kern_vals, out_vals],
                dnn.GpuDnnConv3d
            ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:40,代碼來源:test_dnn.py

示例14: test_pool

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_pool(self):
        if not dnn.dnn_available():
            raise SkipTest(dnn.dnn_available.msg)
        img = T.ftensor4('img')
        img_val = numpy.asarray(
            numpy.random.rand(2, 3, 4, 5),
            dtype='float32'
        )

        # 'average_exc_pad' is disabled for versions < 4004
        if cuda.dnn.version() < (4004, 4004):
            modes = ['max', 'average_inc_pad']
        else:
            modes = ['max', 'average_inc_pad', 'average_exc_pad']

        for params in product(
            [(1, 1), (2, 2), (3, 3)],
            [(1, 1), (2, 2), (3, 3)],
            modes
        ):
            self._compile_and_check(
                [img],
                [dnn.GpuDnnPool(mode=params[2])
                               (img, params[0], params[1], (0, 0))],
                [img_val],
                dnn.GpuDnnPool
            ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:29,代碼來源:test_dnn.py

示例15: test_pool_grad

# 需要導入模塊: from theano.sandbox.cuda import dnn [as 別名]
# 或者: from theano.sandbox.cuda.dnn import dnn_available [as 別名]
def test_pool_grad(self):
        if not dnn.dnn_available():
            raise SkipTest(dnn.dnn_available.msg)
        img = T.ftensor4('img')
        img_grad = T.ftensor4('img_grad')
        out = T.ftensor4('out')
        img_val = numpy.asarray(
            numpy.random.rand(2, 3, 4, 5),
            dtype='float32'
        )
        img_grad_val = numpy.asarray(
            numpy.random.rand(2, 3, 4, 5),
            dtype='float32'
        )
        out_val = numpy.asarray(
            numpy.random.rand(2, 3, 4, 5),
            dtype='float32'
        )

        for params in product(
            [(1, 1), (2, 2), (3, 3)],
            [(1, 1), (2, 2), (3, 3)],
            ['max', 'average_inc_pad']
        ):
            pool_grad = dnn.GpuDnnPoolGrad()(
                img,
                out,
                img_grad,
                params[0],
                params[1],
                (0, 0)
            )
            self._compile_and_check(
                [img, img_grad, out],
                [pool_grad],
                [img_val, img_grad_val, out_val],
                dnn.GpuDnnPoolGrad
            )


# this has been a problem in the past 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:43,代碼來源:test_dnn.py


注:本文中的theano.sandbox.cuda.dnn.dnn_available方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。