當前位置: 首頁>>代碼示例>>Python>>正文


Python ifelse.ifelse方法代碼示例

本文整理匯總了Python中theano.ifelse.ifelse方法的典型用法代碼示例。如果您正苦於以下問題:Python ifelse.ifelse方法的具體用法?Python ifelse.ifelse怎麽用?Python ifelse.ifelse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.ifelse的用法示例。


在下文中一共展示了ifelse.ifelse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_c_thunks

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_c_thunks():
    a = tensor.scalars('a')
    b, c = tensor.vectors('bc')
    cases = [False]
    if theano.config.cxx:
        cases.append(True)
    for c_thunks in cases:
        f = function([a, b, c], ifelse(a, a * b, b * c),
                     mode=Mode(
                         optimizer=None,
                         linker=vm.VM_Linker(c_thunks=c_thunks,
                                             use_cloop=False)))
        f(1, [2], [3, 2])
        from nose.tools import assert_raises
        assert_raises(ValueError, f, 0, [2], [3, 4])
        assert any([hasattr(t, 'cthunk') for t in f.fn.thunks]) == c_thunks 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_vm.py

示例2: test_lazy_if

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_lazy_if(self):
        # Tests that lazy if works .. even if the two results have different
        # shapes but the same type (i.e. both vectors, or matrices or
        # whatnot of same dtype)
        x = tensor.vector('x', dtype=self.dtype)
        y = tensor.vector('y', dtype=self.dtype)
        c = tensor.iscalar('c')
        f = theano.function([c, x, y], ifelse(c, x, y), mode=self.mode)
        self.assertFunctionContains1(f, self.get_ifelse(1))
        rng = numpy.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = numpy.asarray(rng.uniform(size=(xlen,)), self.dtype)
        vy = numpy.asarray(rng.uniform(size=(ylen,)), self.dtype)

        assert numpy.allclose(vx, f(1, vx, vy))
        assert numpy.allclose(vy, f(0, vx, vy)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_ifelse.py

示例3: test_sparse_tensor_error

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_sparse_tensor_error(self):
        import theano.sparse
        if not theano.sparse.enable_sparse:
            raise SkipTest("Optimization temporarily disabled")
        rng = numpy.random.RandomState(utt.fetch_seed())
        data = rng.rand(2, 3).astype(self.dtype)
        x = self.shared(data)
        y = theano.sparse.matrix('csc', dtype=self.dtype, name='y')
        z = theano.sparse.matrix('csr', dtype=self.dtype, name='z')
        cond = theano.tensor.iscalar('cond')

        self.assertRaises(TypeError, ifelse, cond, x, y)
        self.assertRaises(TypeError, ifelse, cond, y, x)
        self.assertRaises(TypeError, ifelse, cond, x, z)
        self.assertRaises(TypeError, ifelse, cond, z, x)
        self.assertRaises(TypeError, ifelse, cond, y, z)
        self.assertRaises(TypeError, ifelse, cond, z, y) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_ifelse.py

示例4: get_aggregator

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def get_aggregator(self):
        initialized = shared_like(0.)
        expression_acc = shared_like(self.expression)

        # Dummy default expression to use as the previously-accumulated
        # value, that has the same shape as the new result
        expression_zeros = tensor.as_tensor(self.expression).zeros_like()

        conditional_update_expr = self.expression + ifelse(initialized,
                                                           expression_acc,
                                                           expression_zeros)

        initialization_updates = [(expression_acc,
                                   tensor.zeros_like(expression_acc)),
                                  (initialized, 0.)]
        accumulation_updates = [(expression_acc,
                                 conditional_update_expr),
                                (initialized, 1.)]
        aggregator = Aggregator(aggregation_scheme=self,
                                initialization_updates=initialization_updates,
                                accumulation_updates=accumulation_updates,
                                readout_variable=(expression_acc))
        return aggregator 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:25,代碼來源:aggregation.py

示例5: __init__

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def __init__(self, input, centerbias = None, alpha=1.0):
        self.input = input
        if centerbias is None:
            centerbias = np.ones(12)
        self.alpha = theano.shared(value = np.array(alpha).astype(theano.config.floatX), name='alpha')
        self.centerbias_ys = theano.shared(value=np.array(centerbias, dtype=theano.config.floatX), name='centerbias_ys')
        self.centerbias_xs = theano.shared(value=np.linspace(0, 1, len(centerbias), dtype=theano.config.floatX), name='centerbias_xs')

        height = T.cast(input.shape[0], theano.config.floatX)
        width = T.cast(input.shape[1], theano.config.floatX)
        x_coords = (T.arange(width) - 0.5*width) / (0.5*width)
        y_coords = (T.arange(height) - 0.5*height) / (0.5*height) + 0.0001  # We cannot have zeros in there because of grad

        x_coords = x_coords.dimshuffle('x', 0)
        y_coords = y_coords.dimshuffle(0, 'x')

        dists = T.sqrt(T.square(x_coords) + self.alpha*T.square(y_coords))
        self.max_dist = T.sqrt(1 + self.alpha)
        self.dists = dists/self.max_dist

        self.factors = nonlinearity(self.dists, self.centerbias_xs, self.centerbias_ys, len(centerbias))

        apply_centerbias = T.gt(self.centerbias_ys.shape[0], 2)
        self.output = ifelse(apply_centerbias, self.input*self.factors, self.input)
        self.params = [self.centerbias_ys, self.alpha] 
開發者ID:matthias-k,項目名稱:pysaliency,代碼行數:27,代碼來源:theano_utils.py

示例6: gate_layer

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def gate_layer(tparams, X_word, X_char, options, prefix, pretrain_mode, activ='lambda x: x', **kwargs):
    """ 
    compute the forward pass for a gate layer

    Parameters
    ----------
    tparams        : OrderedDict of theano shared variables, {parameter name: value}
    X_word         : theano 3d tensor, word input, dimensions: (num of time steps, batch size, dim of vector)
    X_char         : theano 3d tensor, char input, dimensions: (num of time steps, batch size, dim of vector)
    options        : dictionary, {hyperparameter: value}
    prefix         : string, layer name
    pretrain_mode  : theano shared scalar, 0. = word only, 1. = char only, 2. = word & char
    activ          : string, activation function: 'liner', 'tanh', or 'rectifier'

    Returns
    -------
    X              : theano 3d tensor, final vector, dimensions: (num of time steps, batch size, dim of vector)

    """      
    # compute gating values, Eq.(3)
    G = tensor.nnet.sigmoid(tensor.dot(X_word, tparams[p_name(prefix, 'v')]) + tparams[p_name(prefix, 'b')][0])
    X = ifelse(tensor.le(pretrain_mode, numpy.float32(1.)),  
               ifelse(tensor.eq(pretrain_mode, numpy.float32(0.)), X_word, X_char),
               G[:, :, None] * X_char + (1. - G)[:, :, None] * X_word)   
    return eval(activ)(X) 
開發者ID:nyu-dl,項目名稱:gated_word_char_rlm,代碼行數:27,代碼來源:layers.py

示例7: concat_layer

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def concat_layer(tparams, X_word, X_char, options, prefix, pretrain_mode, activ='lambda x: x', **kwargs):
    """ 
    compute the forward pass for a concat layer

    Parameters
    ----------
    tparams        : OrderedDict of theano shared variables, {parameter name: value}
    X_word         : theano 3d tensor, word input, dimensions: (num of time steps, batch size, dim of vector)
    X_char         : theano 3d tensor, char input, dimensions: (num of time steps, batch size, dim of vector)
    options        : dictionary, {hyperparameter: value}
    prefix         : string,  layer name
    pretrain_mode  : theano shared scalar, 0. = word only, 1. = char only, 2. = word & char
    activ          : string, activation function: 'liner', 'tanh', or 'rectifier'

    Returns
    -------
    X              : theano 3d tensor, final vector, dimensions: (num of time steps, batch size, dim of vector)

    """
    X = ifelse(tensor.le(pretrain_mode, numpy.float32(1.)),
               ifelse(tensor.eq(pretrain_mode, numpy.float32(0.)), X_word, X_char),
               tensor.dot(tensor.concatenate([X_word, X_char], axis=2), tparams[p_name(prefix, 'W')]) + tparams[p_name(prefix, 'b')]) 
    return eval(activ)(X) 
開發者ID:nyu-dl,項目名稱:gated_word_char_rlm,代碼行數:25,代碼來源:layers.py

示例8: __init__

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def __init__(self, rng, input, n_in, n_out, is_train,
                 activation, dropout_rate, mask=None, W=None, b=None):
        super(DropoutHiddenLayer, self).__init__(
                rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b,
                activation=activation)

        self.dropout_rate = dropout_rate
        self.srng = T.shared_randomstreams.RandomStreams(rng.randint(999999))
        self.mask = mask
        self.layer = self.output

        # Computes outputs for train and test phase applying dropout when needed.
        train_output = self.layer * T.cast(self.mask, theano.config.floatX)
        test_output = self.output * (1 - dropout_rate)
        self.output = ifelse(T.eq(is_train, 1), train_output, test_output)
        return 
開發者ID:prasadseemakurthi,項目名稱:Deep-Neural-Networks-HealthCare,代碼行數:18,代碼來源:DropoutHiddenLayer.py

示例9: test_ifelse

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_ifelse(self):
        config1 = theano.config.profile
        config2 = theano.config.profile_memory

        try:
            theano.config.profile = True
            theano.config.profile_memory = True

            a, b = T.scalars('a', 'b')
            x, y = T.scalars('x', 'y')

            z = ifelse(T.lt(a, b), x * 2, y * 2)

            p = theano.ProfileStats(False)

            if theano.config.mode in ["DebugMode", "DEBUG_MODE", "FAST_COMPILE"]:
                m = "FAST_RUN"
            else:
                m = None

            f_ifelse = theano.function([a, b, x, y], z, profile=p, name="test_ifelse",
                                       mode=m)

            val1 = 0.
            val2 = 1.
            big_mat1 = 10
            big_mat2 = 11

            f_ifelse(val1, val2, big_mat1, big_mat2)

        finally:
            theano.config.profile = config1
            theano.config.profile_memory = config2 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:35,代碼來源:test_profiling.py

示例10: test_ifelse

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_ifelse():
    a = T.scalar()
    b = generic()
    c = generic()

    notimpl = NotImplementedOp()
    lazys = [True]
    # We need lazy to end up being True for this test.
    if theano.config.vm.lazy in [True, None]:
        lazys = [True, None]
    cloops = [True, False]
    if theano.config.cxx == "":
        cloops = [False]
    for cloop in cloops:
        for lazy in lazys:
            linker = theano.gof.vm.VM_Linker(use_cloop=cloop, lazy=lazy)
            f = function([a, b, c], ifelse(a, notimpl(b), c),
                         mode=Mode(linker=linker, optimizer='fast_run'))

            try:
                # print "case 1"
                f(1, 'a', 'b')
                assert False
            except NotImplementedOp.E:
                pass
            # print "... passed"

            # print "case 2"
            # print f(0, 'a', 'b')
            assert f(0, 'a', 'b') == 'b'
            # print "... passed" 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:33,代碼來源:test_lazy.py

示例11: more_complex_test

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def more_complex_test():
    notimpl = NotImplementedOp()
    ifelseifelseif = IfElseIfElseIf()

    x1 = T.scalar('x1')
    x2 = T.scalar('x2')
    c1 = T.scalar('c1')
    c2 = T.scalar('c2')
    t1 = ifelse(c1, x1, notimpl(x2))
    t1.name = 't1'
    t2 = t1 * 10
    t2.name = 't2'
    t3 = ifelse(c2, t2, x1 + t1)
    t3.name = 't3'
    t4 = ifelseifelseif(T.eq(x1, x2), x1, T.eq(x1, 5), x2, c2, t3, t3 + 0.5)
    t4.name = 't4'

    f = function([c1, c2, x1, x2], t4, mode=Mode(linker='vm',
                                                 optimizer='fast_run'))
    if theano.config.vm.lazy is False:
        try:
            f(1, 0, numpy.array(10, dtype=x1.dtype), 0)
            assert False
        except NotImplementedOp.E:
            pass
    else:
        print(f(1, 0, numpy.array(10, dtype=x1.dtype), 0))
        assert f(1, 0, numpy.array(10, dtype=x1.dtype), 0) == 20.5
    print('... passed') 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:31,代碼來源:test_lazy.py

示例12: test_callback_with_ifelse

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_callback_with_ifelse(self):
        a, b, c = tensor.scalars('abc')
        f = function([a, b, c], ifelse(a, 2 * b, 2 * c),
                     mode=Mode(
                         optimizer=None,
                         linker=vm.VM_Linker(callback=self.callback)))

        f(1, 2, 3)
        assert self.n_callbacks['IfElse'] == 2 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:11,代碼來源:test_vm.py

示例13: test_no_leak_many_call_lazy

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_no_leak_many_call_lazy():
        # Verify no memory leaks when calling a function a lot of times

        # This isn't really a unit test, you have to run it and look at top to
        # see if there's a leak

        def build_graph(x, depth=5):
            z = x
            for d in range(depth):
                z = ifelse(z.mean() > 0.5, -z, z)
            return z

        def time_linker(name, linker):
            steps_a = 10
            x = tensor.dvector()
            a = build_graph(x, steps_a)

            f_a = function([x], a,
                           mode=Mode(optimizer=None,
                                     linker=linker()))
            inp = numpy.random.rand(1000000)
            for i in xrange(100):
                f_a(inp)
            if 0:  # this doesn't seem to work, prints 0 for everything
                import resource
                pre = resource.getrusage(resource.RUSAGE_SELF)
                post = resource.getrusage(resource.RUSAGE_SELF)
                print(pre.ru_ixrss, post.ru_ixrss)
                print(pre.ru_idrss, post.ru_idrss)
                print(pre.ru_maxrss, post.ru_maxrss)
        print(1)
        time_linker('vmLinker_C',
                    lambda: vm.VM_Linker(allow_gc=False, use_cloop=True))
        print(2)
        time_linker('vmLinker',
                    lambda: vm.VM_Linker(allow_gc=False, use_cloop=False)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:38,代碼來源:test_vm.py

示例14: test_not_lazy_if_inplace

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_not_lazy_if_inplace(self):
        # Tests that if the outputs are scalars and the graph is big,
        # we disable the inplace opt to speed up optimization
        x = tensor.vector('x', dtype=self.dtype)
        y = tensor.vector('y', dtype=self.dtype)
        c = tensor.iscalar('c')
        mode = theano.compile.get_mode(self.mode).excluding(
            # Disable many opt to keep the graph big enough to disable
            # the opt.
            'fusion', 'local_add_canonizer',
            'inplace', 'constant_folding', 'constant_folding')
        y2 = reduce(lambda x, y: x + y, [y] + list(range(200)))
        f = theano.function([c, x, y], ifelse(c, x, y2), mode=mode)
        # For not inplace ifelse
        ifnode = [n for n in f.maker.fgraph.toposort()
                  if isinstance(n.op, IfElse)]
        assert len(ifnode) == 1
        assert not ifnode[0].op.as_view
        rng = numpy.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx = numpy.asarray(rng.uniform(size=(xlen,)), self.dtype)
        vy = numpy.asarray(rng.uniform(size=(ylen,)), self.dtype)

        assert numpy.allclose(vx, f(1, vx, vy))
        assert numpy.allclose(vy + sum(range(200)), f(0, vx, vy)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:30,代碼來源:test_ifelse.py

示例15: test_mixed_dtype

# 需要導入模塊: from theano import ifelse [as 別名]
# 或者: from theano.ifelse import ifelse [as 別名]
def test_mixed_dtype(self):
        x1 = tensor.vector('x1', dtype='int32')
        x2 = tensor.vector('x2', dtype=self.dtype)
        y1 = tensor.vector('y1', dtype='int32')
        y2 = tensor.vector('y2', dtype=self.dtype)
        c = tensor.iscalar('c')
        f = theano.function([c, x1, x2, y1, y2],
                            ifelse(c, (x1, x2), (y1, y2)), mode=self.mode)
        self.assertFunctionContains1(f, self.get_ifelse(2))
        rng = numpy.random.RandomState(utt.fetch_seed())

        xlen = rng.randint(200)
        ylen = rng.randint(200)

        vx1 = numpy.asarray(rng.uniform(size=(xlen,)) * 3, 'int32')
        vx2 = numpy.asarray(rng.uniform(size=(xlen,)), self.dtype)
        vy1 = numpy.asarray(rng.uniform(size=(ylen,)) * 3, 'int32')
        vy2 = numpy.asarray(rng.uniform(size=(ylen,)), self.dtype)

        o1, o2 = f(1, vx1, vx2, vy1, vy2)
        assert numpy.allclose(vx1, o1)
        assert numpy.allclose(vx2, o2)

        o1, o2 = f(0, vx1, vx2, vy1, vy2)
        assert numpy.allclose(vy1, o1)
        assert numpy.allclose(vy2, o2) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:28,代碼來源:test_ifelse.py


注:本文中的theano.ifelse.ifelse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。