當前位置: 首頁>>代碼示例>>Python>>正文


Python theano.grad方法代碼示例

本文整理匯總了Python中theano.grad方法的典型用法代碼示例。如果您正苦於以下問題:Python theano.grad方法的具體用法?Python theano.grad怎麽用?Python theano.grad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano的用法示例。


在下文中一共展示了theano.grad方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_csm_grad

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_csm_grad(self):
        for sparsetype in ('csr', 'csc'):
            x = tensor.vector()
            y = tensor.ivector()
            z = tensor.ivector()
            s = tensor.ivector()
            call = getattr(sp, sparsetype + '_matrix')
            spm = call(random_lil((300, 400), config.floatX, 5))
            out = tensor.grad(dense_from_sparse(
                CSM(sparsetype)(x, y, z, s)
            ).sum(), x)
            self._compile_and_check([x, y, z, s],
                                    [out],
                                    [spm.data, spm.indices, spm.indptr,
                                     spm.shape],
                                    (CSMGrad, CSMGradC)
                                   ) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_basic.py

示例2: test_sparseblockgemv_grad_shape

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_sparseblockgemv_grad_shape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
        go = theano.grad(o.sum(), [b, W, h])

        f = theano.function([W, h, iIdx, b, oIdx], go, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        # just make sure that it runs correcly and all the shapes are ok.
        b_g, W_g, h_g = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        assert b_g.shape == b_val.shape
        assert h_g.shape == h_val.shape
        assert W_g.shape == W_val.shape 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_blocksparse.py

示例3: test_grad

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_grad(self):
        c = T.matrix()
        p_y = T.exp(c) / T.exp(c).sum(axis=1).dimshuffle(0, 'x')

        # test that function contains softmax and softmaxgrad
        w = T.matrix()
        backup = config.warn.sum_div_dimshuffle_bug
        config.warn.sum_div_dimshuffle_bug = False
        try:
            g = theano.function([c, w], T.grad((p_y * w).sum(), c))
            hasattr(g.maker.fgraph.outputs[0].tag, 'trace')
        finally:
            config.warn.sum_div_dimshuffle_bug = backup
        g_ops = [n.op for n in g.maker.fgraph.toposort()]
        # print '--- g ='
        # printing.debugprint(g)
        # print '==='

        raise SkipTest('Optimization not enabled for the moment')
        assert len(g_ops) == 2
        assert softmax_op in g_ops
        assert softmax_grad in g_ops
        g(self.rng.rand(3, 4), self.rng.uniform(.5, 1, (3, 4))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_nnet.py

示例4: test_transpose_basic

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_transpose_basic(self):
        # this should be a transposed softmax
        c = T.matrix()
        p_y = T.exp(c) / T.exp(c).sum(axis=0)

        # test that function contains softmax and no div.
        f = theano.function([c], p_y)
        # printing.debugprint(f)

        # test that function contains softmax and no div.
        backup = config.warn.sum_div_dimshuffle_bug
        config.warn.sum_div_dimshuffle_bug = False
        try:
            g = theano.function([c], T.grad(p_y.sum(), c))
            hasattr(g.maker.fgraph.outputs[0].tag, 'trace')
        finally:
            config.warn.sum_div_dimshuffle_bug = backup
        # printing.debugprint(g)
        raise SkipTest('Optimization not enabled for the moment') 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_nnet.py

示例5: test_1d_basic

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_1d_basic(self):
        # this should be a softmax, but of a one-row matrix
        c = T.vector()
        p_y = T.exp(c) / T.exp(c).sum()

        # test that function contains softmax and no div.
        f = theano.function([c], p_y)
        hasattr(f.maker.fgraph.outputs[0].tag, 'trace')
        # printing.debugprint(f)

        # test that function contains softmax and no div.
        backup = config.warn.sum_div_dimshuffle_bug
        config.warn.sum_div_dimshuffle_bug = False
        try:
            g = theano.function([c], T.grad(p_y.sum(), c))
            hasattr(g.maker.fgraph.outputs[0].tag, 'trace')
        finally:
            config.warn.sum_div_dimshuffle_bug = backup
        # printing.debugprint(g)
        raise SkipTest('Optimization not enabled for the moment')

    # REPEAT 3 CASES in presence of log(softmax) with the advanced indexing
    # etc. 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_nnet.py

示例6: test_broadcast_grad

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_broadcast_grad():
    rng = numpy.random.RandomState(utt.fetch_seed())
    x1 = T.tensor4('x')
    x1_data = rng.randn(1, 1, 300, 300)
    sigma = T.scalar('sigma')
    sigma_data = 20
    window_radius = 3

    filter_1d = T.arange(-window_radius, window_radius+1)
    filter_1d = filter_1d.astype(theano.config.floatX)
    filter_1d = T.exp(-0.5*filter_1d**2/sigma**2)
    filter_1d = filter_1d / filter_1d.sum()

    filter_W = filter_1d.dimshuffle(['x', 'x', 0, 'x'])

    y = theano.tensor.nnet.conv2d(x1, filter_W, border_mode='full',
                                  filter_shape=[1, 1, None, None])
    theano.grad(y.sum(), sigma) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_conv.py

示例7: test_other_grad_tests

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_other_grad_tests(self):
        x = theano.tensor.dmatrix()
        x_val1 = numpy.array([[1, 2, 3], [0, 5, 6], [0, 0, 9]],
             dtype='float32')
        x_val2 = numpy.array([[1, 2, 0], [0, 5, 6], [7, 8, 9], [9, 10, 0]],
             dtype='float32')
        rng = rng = numpy.random.RandomState(43)

        p = Prod(axis=1)
        grad_p = theano.tensor.grad(p(x).sum(), x)
        grad_fn = theano.function([x], grad_p, mode=self.mode)
        assert numpy.allclose(grad_fn(x_val1), [[6., 3., 2.], [30., 0.,
            0.], [0., 0., 0.]])
        assert numpy.allclose(grad_fn(x_val2), [[0., 0., 2.], [30.,
             0., 0.], [72., 63., 56.], [0., 0., 90.]])

        p_axis0 = Prod(axis=0)
        grad_p_axis0 = theano.tensor.grad(p_axis0(x).sum(), x)
        grad_fn_axis0 = theano.function([x], grad_p_axis0, mode=self.mode)
        assert numpy.allclose(grad_fn_axis0(x_val2), [[0., 400.,
             0.], [63., 160., 0.], [0., 100., 0.], [0., 80., 0.]])

        tensor.verify_grad(p, [x_val1], rng=rng, mode=self.mode) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_elemwise.py

示例8: test_gt_grad

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_gt_grad():
    """A user test that failed.

    Something about it made Elemwise.grad return something that was
    too complicated for get_scalar_constant_value to recognize as being 0, so
    gradient.grad reported that it was not a valid gradient of an
    integer.

    """
    floatX = config.floatX
    T = theano.tensor

    input_ = T.vector(dtype=floatX)
    random_values = numpy.random.RandomState(1234).uniform(
                                                low=-1, high=1, size=(2, 2))
    W_values = numpy.asarray(random_values, dtype=floatX)
    W = theano.shared(value=W_values, name='weights')
    correct_score = T.dot(input_, W)
    wrong_input = T.vector(dtype=floatX)
    wrong_score = theano.clone(correct_score, {input_: wrong_input})
    # Hinge loss

    scores = T.ones_like(correct_score) - correct_score + wrong_score
    cost = (scores * (scores > 0)).sum()
    T.grad(cost, input_) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_elemwise.py

示例9: test_grad_1d

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_grad_1d(self):
        subi = 0
        data = numpy.asarray(rand(2, 3), dtype=self.dtype)
        n = self.shared(data)
        z = scal.constant(subi)
        t = n[z:, z]
        gn = theano.tensor.grad(theano.tensor.sum(theano.tensor.exp(t)), n)

        f = inplace_func([], gn, mode=self.mode)
        topo = f.maker.fgraph.toposort()
        topo_ = [node for node in topo if not isinstance(node.op,
                                                         self.ignore_topo)]
        if not self.fast_compile:
            assert len(topo_) == 6
        assert numpy.sum([isinstance(node.op, self.inc_sub)
                          for node in topo_]) == 1
        assert numpy.sum([isinstance(node.op, self.sub)
                          for node in topo_]) == 1
        gval = f()

        good = numpy.zeros_like(data)
        good[subi:, subi] = numpy.exp(data[subi:, subi])
        self.assertTrue(numpy.allclose(gval, good), (gval, good)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_subtensor.py

示例10: test_grad_2d_inc_set_subtensor

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_grad_2d_inc_set_subtensor(self):
        for n_shape, m_shape in [
            [(2, 3), (2, 2)],
            [(3, 2), (2, 2)],
            [(3, 2), (1, 2)],
            [(3, 2), (2,)],
        ]:
            for op in [inc_subtensor, set_subtensor]:
                subi = 2
                data = numpy.asarray(rand(*n_shape), dtype=self.dtype)
                n = self.shared(data)
                z = scal.constant(subi)
                m = matrix('m', dtype=self.dtype)
                mv = numpy.asarray(rand(*m_shape), dtype=self.dtype)

                t = op(n[:z, :z], m)
                gn, gm = theano.tensor.grad(theano.tensor.sum(t), [n, m])
                utt.verify_grad(lambda m: op(n[:z, :z], m), [mv])
                utt.verify_grad(lambda nn: op(nn[:z, :z], mv), [data]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_subtensor.py

示例11: test_grad_0d

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_grad_0d(self):
        data = numpy.asarray(rand(2, 3), dtype=self.dtype)
        n = self.shared(data)
        t = n[1, 0]
        gn = theano.tensor.grad(theano.tensor.sum(theano.tensor.exp(t)), n)
        f = self.function([], gn)
        topo = f.maker.fgraph.toposort()
        topo_ = [node for node in topo if not isinstance(node.op,
             self.ignore_topo)]
        if not self.fast_compile:
            assert len(topo_) == 6
        assert numpy.sum([isinstance(node.op, self.inc_sub)
             for node in topo_]) == 1
        assert numpy.sum([isinstance(node.op, self.sub)
             for node in topo_]) == 1

        gval = f()
        good = numpy.zeros_like(data)
        good[1, 0] = numpy.exp(data[1, 0])
        self.assertTrue(numpy.allclose(gval, good), (gval, good)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_subtensor.py

示例12: test_err_bound_list

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_err_bound_list(self):
        n = self.shared(numpy.ones((2, 3), dtype=self.dtype) * 5)
        l = lvector()
        t = n[l]
        # We test again AdvancedSubtensor1 as we transfer data to the cpu.
        self.assertTrue(isinstance(t.owner.op, tensor.AdvancedSubtensor1))

        f = self.function([l], t, op=self.adv_sub1)

        # the grad
        g = self.function([l],
                          inc_subtensor(t, numpy.asarray([[1.]], self.dtype)),
                          op=self.adv_incsub1)

        for shp in [[0, 4], [0, -3], [-10]]:
            self.assertRaises(IndexError, f, shp)
            self.assertRaises(IndexError, g, shp) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_subtensor.py

示例13: test_grad_advanced_inc_subtensor

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_grad_advanced_inc_subtensor(self):
        def inc_slice(*s):
            def just_numeric_args(a, b):
                cost = (a[s] + b).sum()
                cost_wrt_a = theano.tensor.grad(cost, a)
                cost_wrt_b = theano.tensor.grad(cost, b)
                grads = cost_wrt_a.sum() + cost_wrt_b.sum()
                return grads
            return just_numeric_args

        # vector
        utt.verify_grad(
            inc_slice(slice(2, 4, None)),
            (numpy.asarray([0, 1, 2, 3, 4, 5.]), numpy.asarray([9, 9.]),))

        # matrix
        utt.verify_grad(
            inc_slice(slice(1, 2, None), slice(None, None, None)),
            (numpy.asarray([[0, 1], [2, 3], [4, 5.]]),
             numpy.asarray([[9, 9.]]),))

        # single element
        utt.verify_grad(
            inc_slice(2, 1),
            (numpy.asarray([[0, 1], [2, 3], [4, 5.]]), numpy.asarray(9.),)) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_subtensor.py

示例14: test_inc_adv_subtensor_with_broadcasting

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_inc_adv_subtensor_with_broadcasting(self):
        if inplace_increment is None:
            raise inplace_increment_missing

        inc = dscalar()
        a = inc_subtensor(self.m[self.ix1, self.ix12], inc)
        g_inc = tensor.grad(a.sum(), inc)

        assert a.type == self.m.type, (a.type, self.m.type)
        f = theano.function([self.m, self.ix1, self.ix12, inc], [a, g_inc],
                            allow_input_downcast=True)
        aval, gval = f([[.4, .9, .1],
                        [5, 6, 7],
                        [.5, .3, .15]],
                       [1, 2, 1],
                       [0, 1, 0],
                       2.1)
        assert numpy.allclose(aval,
                [[.4, .9, .1],
                  [5 + 2.1 * 2, 6, 7],
                  [.5, .3 + 2.1, .15]]), aval
        assert numpy.allclose(gval, 3.0), gval 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_subtensor.py

示例15: test_inc_adv_subtensor1_with_broadcasting

# 需要導入模塊: import theano [as 別名]
# 或者: from theano import grad [as 別名]
def test_inc_adv_subtensor1_with_broadcasting(self):
        if inplace_increment is None:
            raise inplace_increment_missing

        inc = dscalar()
        a = inc_subtensor(self.m[self.ix1], inc)
        g_inc = tensor.grad(a.sum(), inc)

        assert a.type == self.m.type, (a.type, self.m.type)
        f = theano.function([self.m, self.ix1, inc], [a, g_inc],
                            allow_input_downcast=True)
        aval, gval = f([[.4, .9, .1],
                        [5, 6, 7],
                        [.5, .3, .15]],
                       [0, 1, 0],
                       2.1)
        assert numpy.allclose(aval,
                [[.4 + 2.1 * 2, .9  + 2.1 * 2, .1 + 2.1 * 2],
                  [5 + 2.1, 6 + 2.1, 7 + 2.1],
                  [.5, .3, .15]]), aval
        assert numpy.allclose(gval, 9.0), gval 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_subtensor.py


注:本文中的theano.grad方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。