當前位置: 首頁>>代碼示例>>Python>>正文


Python gof.local_optimizer方法代碼示例

本文整理匯總了Python中theano.gof.local_optimizer方法的典型用法代碼示例。如果您正苦於以下問題:Python gof.local_optimizer方法的具體用法?Python gof.local_optimizer怎麽用?Python gof.local_optimizer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.gof的用法示例。


在下文中一共展示了gof.local_optimizer方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_badoptimization

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def test_badoptimization():
    @gof.local_optimizer([theano.tensor.add])
    def insert_broken_add(node):
        if node.op == theano.tensor.add:
            return [off_by_half(*node.inputs)]
        return False
    edb = gof.EquilibriumDB()
    edb.register('insert_broken_add', insert_broken_add, 'all')
    opt = edb.query('+all')

    a = theano.tensor.dvector()
    b = theano.tensor.dvector()

    f = theano.function([a, b], a + b,
                        mode=debugmode.DebugMode(optimizer=opt))

    try:
        f([1.0, 2.0, 3.0], [2, 3, 4],)
    except debugmode.BadOptimization as e:
        assert str(e.reason) == 'insert_broken_add'
        return  # TEST PASS

    assert False 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_debugmode.py

示例2: test_badoptimization

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def test_badoptimization():
    @gof.local_optimizer([theano.tensor.add])
    def insert_broken_add(node):
        if node.op == theano.tensor.add:
            return [off_by_half(*node.inputs)]
        return False
    edb = gof.EquilibriumDB()
    edb.register('insert_broken_add', insert_broken_add, 'all')
    opt = edb.query('+all')

    a = theano.tensor.dvector()
    b = theano.tensor.dvector()

    f = theano.function([a, b], a + b,
            mode=debugmode.DebugMode(optimizer=opt))

    try:
        f([1.0, 2.0, 3.0], [2, 3, 4],)
    except debugmode.BadOptimization as e:
        assert str(e.reason) == 'insert_broken_add'
        return  # TEST PASS

    assert False 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:25,代碼來源:test_debugmode.py

示例3: test_badoptimization_opt_err

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def test_badoptimization_opt_err():
    """This variant of test_badoptimization() replace the working code
    with a new apply node that will raise an error.

    """
    @gof.local_optimizer([theano.tensor.add])
    def insert_bigger_b_add(node):
        if node.op == theano.tensor.add:
            inputs = list(node.inputs)
            if inputs[-1].owner is None:
                inputs[-1] = theano.tensor.concatenate((inputs[-1],
                                                        inputs[-1]))
                return [node.op(*inputs)]
        return False
    edb = gof.EquilibriumDB()
    edb.register('insert_bigger_b_add', insert_bigger_b_add, 'all')
    opt = edb.query('+all')

    a = theano.tensor.dvector()
    b = theano.tensor.dvector()

    f = theano.function([a, b], a + b,
                        mode=debugmode.DebugMode(optimizer=opt))

    try:
        f([1.0, 2.0, 3.0], [2, 3, 4],)
    except Exception as e:
        assert 'insert_bigger_b_add' in exc_message(e)
        return  # TEST PASS

    assert False 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:33,代碼來源:test_debugmode.py

示例4: test_stochasticoptimization

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def test_stochasticoptimization():

    # this optimization alternates between triggering and not triggering.

    last_time_replaced = [False]

    @gof.local_optimizer([theano.tensor.add])
    def insert_broken_add_sometimes(node):
        if node.op == theano.tensor.add:
            last_time_replaced[0] = not last_time_replaced[0]
            if last_time_replaced[0]:
                return [off_by_half(*node.inputs)]
        return False

    edb = gof.EquilibriumDB()
    edb.register(
        'insert_broken_add_sometimes',
        insert_broken_add_sometimes,
        'all')
    opt = edb.query('+all')

    a = theano.tensor.dvector()
    b = theano.tensor.dvector()

    try:
        theano.function([a, b],
                        theano.tensor.add(a, b),
                        mode=debugmode.DebugMode(
                            optimizer=opt,
                            check_c_code=True,
                            stability_patience=max(2, config.DebugMode.patience)))
    except debugmode.StochasticOrder:
        return  # TEST PASS
    assert False 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:36,代碼來源:test_debugmode.py

示例5: alpha_merge

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def alpha_merge(cls, alpha_in, beta_in):
    def wrapper(maker):
        @local_optimizer([GpuElemwise])
        @wraps(maker)
        def opt(node):
            if (isinstance(node.op, GpuElemwise) and
                    node.op.scalar_op == scal.mul and
                    node.nin == 2):
                targ = find_node(node.inputs[0], cls)
                if targ is None:
                    targ = find_node(node.inputs[1], cls)
                    if targ is None:
                        return
                    lr = grab_cpu_scalar(node.inputs[0],
                                         nd=targ.outputs[0].ndim)
                else:
                    lr = grab_cpu_scalar(node.inputs[1],
                                         nd=targ.outputs[0].ndim)
                if lr is None or targ is None:
                    return None
                inputs = list(targ.inputs)
                try:
                    c = get_scalar_constant_value(lr)
                    if c == 0:
                        inputs[alpha_in] = lr
                        inputs[beta_in] = lr
                    elif c == 1:
                        inputs[alpha_in] = targ.inputs[alpha_in]
                        inputs[beta_in] = targ.inputs[beta_in]
                    else:
                        inputs[alpha_in] = lr * targ.inputs[alpha_in]
                        inputs[beta_in] = lr * targ.inputs[beta_in]
                except NotScalarConstantError:
                    inputs[alpha_in] = lr * targ.inputs[alpha_in]
                    inputs[beta_in] = lr * targ.inputs[beta_in]
                return maker(targ, *inputs)
        return opt
    return wrapper 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:40,代碼來源:opt_util.py

示例6: output_merge

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def output_merge(cls, alpha_in, beta_in, out_in):
    def wrapper(maker):
        @local_optimizer([GpuElemwise])
        @wraps(maker)
        def opt(node):
            if (isinstance(node.op, GpuElemwise) and
                    node.op.scalar_op == scal.add and
                    node.nin == 2):
                targ = find_node(node.inputs[0], cls)
                W = node.inputs[1]
                if targ is None:
                    targ = find_node(node.inputs[1], cls)
                    W = node.inputs[0]
                if targ is None:
                    return None
                if not is_equal(targ.inputs[beta_in], 0.0):
                    # other cases are too complex for now
                    return None
                if W.broadcastable != targ.inputs[out_in].broadcastable:
                    # May change later to do the broadcast, but it's
                    # under discussion.
                    return None
                inputs = list(targ.inputs)
                inputs[out_in] = W
                inputs[beta_in] = _one.clone()
                return maker(targ, *inputs)
        return opt
    return wrapper 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:30,代碼來源:opt_util.py

示例7: test_stochasticoptimization

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def test_stochasticoptimization():

    # this optimization alternates between triggering and not triggering.

    last_time_replaced = [False]

    @gof.local_optimizer([theano.tensor.add])
    def insert_broken_add_sometimes(node):
        if node.op == theano.tensor.add:
            last_time_replaced[0] = not last_time_replaced[0]
            if last_time_replaced[0]:
                return [off_by_half(*node.inputs)]
        return False

    edb = gof.EquilibriumDB()
    edb.register(
            'insert_broken_add_sometimes',
            insert_broken_add_sometimes,
            'all')
    opt = edb.query('+all')

    a = theano.tensor.dvector()
    b = theano.tensor.dvector()

    try:
        theano.function([a, b],
                theano.tensor.add(a, b),
                mode=debugmode.DebugMode(
                    optimizer=opt,
                    check_c_code=True,
                    stability_patience=max(2, config.DebugMode.patience)))
    except debugmode.StochasticOrder:
        return  # TEST PASS
    assert False 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:36,代碼來源:test_debugmode.py

示例8: op_lifter

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import local_optimizer [as 別名]
def op_lifter(OP, cuda_only=False):
    """
    OP(..., host_from_gpu(), ...) -> host_from_gpu(GpuOP(...))

    gpu_from_host(OP(inp0, ...)) -> GpuOP(inp0, ...)

    """
    def f(maker):
        def local_opt(node):
            if type(node.op) in OP:
                # Either one of our inputs is on the gpu or
                # all of our clients are on the gpu
                replace = False
                # TODO: Maybe set context_name with infer_context_name()?
                context_name = None
                # We replace if any input is a host_from_gpu
                for i in node.inputs:
                    if i.owner and i.owner.op == host_from_gpu:
                        context_name = i.owner.inputs[0].type.context_name
                        replace = True
                        break
                if not replace:
                    # We replace if *all* clients are on the GPU
                    clients = [c for o in node.outputs for c in o.clients]
                    replace = len(clients) != 0
                    for c, idx in clients:
                        if (c == 'output' or
                                not isinstance(c.op, GpuFromHost)):
                            replace = False
                    # TODO: check that the clients want the same context?
                    if replace:
                        # All clients are GpuFromHost and we have at least one
                        context_name = clients[0][0].op.context_name

                # Check if we should replace
                if (not replace or
                    (cuda_only and
                     get_context(context_name).kind != 'cuda')):
                    return False

                # tag the inputs with the context in case
                # the context was derived from the outputs
                for i in node.inputs:
                    i.tag.context_name = context_name
                new_op = maker(node, context_name)
                # This is needed as sometimes new_op inherits from OP.
                if new_op and new_op != node.op:
                    if isinstance(new_op, theano.Op):
                        return [safe_to_cpu(o) for o in
                                new_op(*node.inputs, return_list=True)]
                    elif isinstance(new_op, (tuple, list)):
                        return [safe_to_cpu(o) for o in new_op]
                    else:  # suppose it is a variable on the GPU
                        return [host_from_gpu(new_op)]
            return False
        local_opt.__name__ = maker.__name__
        return local_optimizer(OP)(local_opt)
    return f 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:60,代碼來源:opt.py


注:本文中的theano.gof.local_optimizer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。