本文整理匯總了Python中theano.gof.Variable方法的典型用法代碼示例。如果您正苦於以下問題:Python gof.Variable方法的具體用法?Python gof.Variable怎麽用?Python gof.Variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.gof
的用法示例。
在下文中一共展示了gof.Variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _is_sparse_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def _is_sparse_variable(x):
"""
Returns
-------
boolean
True iff x is a L{SparseVariable} (and not a L{tensor.TensorType},
for instance).
"""
if not isinstance(x, gof.Variable):
raise NotImplementedError("this function should only be called on "
"*variables* (of type sparse.SparseType "
"or tensor.TensorType, for instance), not ",
x)
return isinstance(x.type, SparseType)
示例2: wrap_in
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def wrap_in(input):
if isinstance(input, (SymbolicInput, SymbolicInputKit)):
return input
elif isinstance(input, gof.Variable):
# r -> SymbolicInput(variable=r)
return SymbolicInput(input)
elif isinstance(input, (list, tuple)):
# (r, u) -> SymbolicInput(variable=r, update=u)
if len(input) == 2:
return SymbolicInput(input[0], update=input[1])
else:
raise TypeError("Expected two elements in the list or tuple.",
input)
else:
raise TypeError("Unknown input type: %s (%s), expected Variable "
"instance", type(input), input)
示例3: uniform
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def uniform(self, size, low=0.0, high=1.0, ndim=None,
dtype=config.floatX):
"""
Return symbolic tensor of uniform numbers.
"""
if isinstance(size, tuple):
msg = "size must be a tuple of int or a Theano variable"
assert all([isinstance(i, int) or isinstance(i, Variable)
for i in size]), msg
else:
msg = "size must be a tuple of int or a Theano variable"
assert isinstance(size, Variable) and size.ndim == 1, msg
generator = theano.shared(False) # makes a generic
s_size = theano.tensor.as_tensor_variable(size)
u = CURAND_Uniform.new_auto_update(generator, ndim, dtype, s_size,
self.next_seed())
self.state_updates.append(u.update)
rval = u * (high - low) + low
if u.type.broadcastable != rval.type.broadcastable:
raise NotImplementedError(
'Increase the size to match the broadcasting pattern of '
'low and `high` arguments'
)
return rval
示例4: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def make_node(self, x, index):
assert isinstance(x.type, TypedListType)
if not isinstance(index, Variable):
if isinstance(index, slice):
index = Constant(SliceType(), index)
return Apply(self, [x, index], [x.type()])
else:
index = T.constant(index, ndim=0, dtype='int64')
return Apply(self, [x, index], [x.ttype()])
if isinstance(index.type, SliceType):
return Apply(self, [x, index], [x.type()])
elif isinstance(index, T.TensorVariable) and index.ndim == 0:
assert index.dtype == 'int64'
return Apply(self, [x, index], [x.ttype()])
else:
raise TypeError('Expected scalar or slice as index.')
示例5: _is_dense_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def _is_dense_variable(x):
"""
Returns
-------
boolean
True if x is a L{tensor.TensorType} (and not a L{SparseVariable},
for instance).
"""
if not isinstance(x, gof.Variable):
raise NotImplementedError("this function should only be called on "
"*variables* (of type sparse.SparseType or "
"tensor.TensorType, for instance), not ", x)
return isinstance(x.type, tensor.TensorType)
示例6: as_sparse_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def as_sparse_variable(x, name=None):
"""
Wrapper around SparseVariable constructor to construct
a Variable with a sparse matrix with the same dtype and
format.
Parameters
----------
x
A sparse matrix.
Returns
-------
object
SparseVariable version of `x`.
"""
# TODO
# Verify that sp is sufficiently sparse, and raise a
# warning if it is not
if isinstance(x, gof.Apply):
if len(x.outputs) != 1:
raise ValueError("It is ambiguous which output of a "
"multi-output Op has to be fetched.", x)
else:
x = x.outputs[0]
if isinstance(x, gof.Variable):
if not isinstance(x.type, SparseType):
raise TypeError("Variable type field must be a SparseType.", x,
x.type)
return x
try:
return constant(x, name=name)
except TypeError:
raise TypeError("Cannot convert %s to SparseType" % x, type(x))
示例7: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def make_node(self, data, indices, indptr, shape):
data = tensor.as_tensor_variable(data)
if not isinstance(indices, gof.Variable):
indices_ = numpy.asarray(indices)
indices_32 = theano._asarray(indices, dtype='int32')
assert (indices_ == indices_32).all()
indices = indices_32
if not isinstance(indptr, gof.Variable):
indptr_ = numpy.asarray(indptr)
indptr_32 = theano._asarray(indptr, dtype='int32')
assert (indptr_ == indptr_32).all()
indptr = indptr_32
if not isinstance(shape, gof.Variable):
shape_ = numpy.asarray(shape)
shape_32 = theano._asarray(shape, dtype='int32')
assert (shape_ == shape_32).all()
shape = shape_32
indices = tensor.as_tensor_variable(indices)
indptr = tensor.as_tensor_variable(indptr)
shape = tensor.as_tensor_variable(shape)
if data.type.ndim != 1:
raise TypeError('data argument must be a vector', data.type,
data.type.ndim)
if indices.type.ndim != 1 or indices.type.dtype not in discrete_dtypes:
raise TypeError('indices must be vector of integers', indices,
indices.type)
if indptr.type.ndim != 1 or indptr.type.dtype not in discrete_dtypes:
raise TypeError('indices must be vector of integers', indptr,
indptr.type)
if shape.type.ndim != 1 or shape.type.dtype not in discrete_dtypes:
raise TypeError('n_rows must be integer type', shape, shape.type)
return gof.Apply(self,
[data, indices, indptr, shape],
[SparseType(dtype=data.type.dtype,
format=self.format)()])
示例8: my_as_scalar
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def my_as_scalar(a):
# Since scal.as_scalar does not know about tensor types (it would
# create a circular import) , this method converts either a
# TensorVariable or a ScalarVariable to a scalar.
if isinstance(a, gof.Variable) and isinstance(a.type, TensorType):
return theano.tensor.scalar_from_tensor(a)
else:
return scal.as_scalar(a)
示例9: as_index_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def as_index_variable(idx):
if idx is None:
return NoneConst.clone()
if isinstance(idx, slice):
return make_slice(idx)
if isinstance(idx, gof.Variable) and isinstance(idx.type, SliceType):
return idx
idx = theano.tensor.as_tensor_variable(idx)
if idx.type.dtype[:3] not in ('int', 'uin'):
raise TypeError('index must be integers')
return idx
示例10: filter_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def filter_variable(self, other, allow_convert=True):
"""
Convert a symbolic Variable into a TensorType, if compatible.
For the moment, only a TensorType or CudaNdarrayType will be
converted, provided they have the same number of dimensions,
broadcastable pattern, and dtype.
"""
if hasattr(other, '_as_TensorVariable'):
other = other._as_TensorVariable()
if not isinstance(other, Variable):
# The value is not a Variable: we cast it into
# a Constant of the appropriate Type.
other = self.Constant(type=self, data=other)
if other.type == self:
return other
if allow_convert:
# Attempt safe broadcast conversion.
other2 = self.convert_variable(other)
if other2 is not None and other2.type == self:
return other2
raise TypeError(
'Cannot convert Type %(othertype)s '
'(of Variable %(other)s) into Type %(self)s. '
'You can try to manually convert %(other)s into a %(self)s.' %
dict(othertype=other.type,
other=other,
self=self))
示例11: make_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def make_variable(self, name=None):
"""
Return a `TensorVariable` of this type.
Parameters
----------
name : str
A pretty name to identify this `Variable` when printing and
debugging
"""
return self.Variable(self, name=name)
示例12: all
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def all(self, axis=None, keepdims=False):
return theano.tensor.basic.all(self, axis=axis, keepdims=keepdims)
# Otherwise TensorVariable[:-1] does not work as Python 2.5.1 calls
# __len__ before calling __getitem__. It also does not catch the raised
# Exception!
# def __len__(self):
# # We can't implement __len__ as Python requests that this
# # function returns an integer >=0
# raise Exception("Theano Variables can't work with len(Theano "
# "Variable) due to Python restriction. You can use "
# "TheanoVariable.shape[0] instead.")
示例13: validate
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def validate(self, fgraph):
if not hasattr(fgraph, 'destroyers'):
return True
for r in self.protected + list(fgraph.outputs):
if fgraph.destroyers(r):
raise gof.InconsistencyError("Trying to destroy a protected"
"Variable.", r)
示例14: expand_in
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def expand_in(sinput, rinputs):
# For SymbolicInputKits, this extracts a list of SymbolicInput
# instances and corresponding indices such that these
# SymbolicInputs are representative of some of the Variable
# instances in inputs. For SymbolicInput, this returns None
# as the list of indices and a list with just the
# SymbolicInput.
if isinstance(sinput, SymbolicInputKit):
return sinput.complete(rinputs)
elif isinstance(sinput, SymbolicInput):
return [None, [sinput]]
示例15: wrap_out
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Variable [as 別名]
def wrap_out(output):
if isinstance(output, SymbolicOutput):
return output
elif isinstance(output, gof.Variable):
return SymbolicOutput(output)
else:
raise TypeError("Unknown output type: %s (%s)", type(output),
output)