當前位置: 首頁>>代碼示例>>Python>>正文


Python gof.Op方法代碼示例

本文整理匯總了Python中theano.gof.Op方法的典型用法代碼示例。如果您正苦於以下問題:Python gof.Op方法的具體用法?Python gof.Op怎麽用?Python gof.Op使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.gof的用法示例。


在下文中一共展示了gof.Op方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: c_code_cache_version_apply

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def c_code_cache_version_apply(self, node):
        version = [12]  # the version corresponding to the c code in this Op

        # now we insert versions for the ops on which we depend...
        scalar_node = Apply(
            self.scalar_op,
            [get_scalar_type(dtype=input.type.dtype).make_variable()
             for input in node.inputs],
            [get_scalar_type(dtype=output.type.dtype).make_variable()
             for output in node.outputs])
        version.append(self.scalar_op.c_code_cache_version_apply(scalar_node))
        for i in node.inputs + node.outputs:
            version.append(get_scalar_type(dtype=i.type.dtype).c_code_cache_version())
        version.append(('openmp', self.openmp))
        if all(version):
            return tuple(version)
        else:
            return () 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:elemwise.py

示例2: register_shape_c_code

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def register_shape_c_code(type, code, version=()):
    """
    Tell Shape Op how to generate C code for a Theano Type.

    Parameters
    ----------
    typ : Theano type
        It must be the Theano class itself and not an instance of the class.
    code : C code
        Returns a vector representing the shape for the Theano type 'typ'.
        Use %(iname)s and %(oname)s for the input and output C variable names
        respectively.
    version
        A number indicating the version of the code, for cache.

    """
    Shape.c_code_and_version[type] = (code, version) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:ops.py

示例3: test_aliased_outputs_ok

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_aliased_outputs_ok(self):
        # here aliased outputs is ok because they are both aliased to an input
        # as well
        class CustomOp(gof.Op):
            view_map = {0: [0], 1: [0]}

            def make_node(self, a, b):
                c = a.type()
                d = a.type()
                return gof.Apply(self, [a, b], [c, d])

            def perform(self, node, inp, out):
                a, b = inp
                c, d = out
                c[0] = a
                d[0] = a[1:]

        x = theano.tensor.dvector('x')
        y = theano.tensor.dvector('y')
        f = theano.function([x, y], CustomOp()(x, y), mode='DEBUG_MODE')

        r0, r1 = f([1, 2, 3, 4], [5, 6, 7, 8])

        assert numpy.all(r0 == [1, 2, 3, 4])
        assert numpy.all(r1 == [2, 3, 4]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_debugmode.py

示例4: test_aliased_outputs_ok_output

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_aliased_outputs_ok_output(self):
        # here aliased outputs is ok because they are both outputs of the
        # function as a whole and thus not destroy-able
        class CustomOp(gof.Op):
            def make_node(self, a, b):
                c = a.type()
                d = a.type()
                return gof.Apply(self, [a, b], [c, d])

            def perform(self, node, inp, out):
                a, b = inp
                c, d = out
                r = a * 2
                c[0] = r
                d[0] = r[1:]

        x = theano.tensor.dvector()
        y = theano.tensor.dvector()
        f = theano.function([x, y], CustomOp()(x, y), mode='DEBUG_MODE')

        r0, r1 = f([1, 2, 3, 4], [5, 6, 7, 8])

        assert numpy.all(r0 == [2, 4, 6, 8])
        assert numpy.all(r1 == [4, 6, 8]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_debugmode.py

示例5: test_aliased_outputs_ok_shadow

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_aliased_outputs_ok_shadow(self):
        # here the alias between outputs is ok because one of them is not used
        # for subsequent computation.  This is like the case where we use one
        # output as a memory buffer to serve another output.
        class CustomOp(gof.Op):
            def make_node(self, a, b):
                c = a.type()
                d = a.type()
                return gof.Apply(self, [a, b], [c, d])

            def perform(self, node, inp, out):
                a, b = inp
                c, d = out
                r = a * 1
                c[0] = r
                d[0] = r[1:]

        x = theano.tensor.dvector('x')
        y = theano.tensor.dvector('y')
        f = theano.function([x, y], CustomOp()(x, y)[0] * 2, mode='DEBUG_MODE')

        r0 = f([1, 2, 3, 4], [5, 6, 7, 8])

        assert numpy.all(r0 == [2, 4, 6, 8]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_debugmode.py

示例6: test_retNone1

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_retNone1(self):
        """Test that it is not ok to return None from op.grad()"""
        class retNone(gof.op.Op):
            __props__ = ()

            def make_node(self):
                inputs = [theano.tensor.vector()]
                outputs = [theano.tensor.vector()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inp, grads):
                x, = inp
                gz, = grads
                pass
        a = retNone().make_node()
        self.assertRaises(TypeError, grad_sources_inputs, [(a.out, one)], None) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_gradient.py

示例7: test_wrong_rval_len1

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_wrong_rval_len1(self):
        """Test that it is not ok to return the wrong number of gradient terms
        """
        class retOne(gof.op.Op):
            __props__ = ()

            def make_node(self, *inputs):
                outputs = [theano.tensor.vector()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inputs, grads):
                return [inputs[0].zeros_like()]

        i = theano.tensor.vector()
        j = theano.tensor.vector()
        a1 = retOne().make_node(i)
        grad_sources_inputs([(a1.out, one)], None)
        a2 = retOne().make_node(i, j)
        self.assertRaises(ValueError, grad_sources_inputs, [(a2.out, one)], None) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_gradient.py

示例8: test_1in_1out

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_1in_1out(self):
        """Test grad is called correctly for a 1-to-1 op"""
        gval = theano.tensor.matrix()

        class O(gof.op.Op):
            __props__ = ()

            def make_node(self):
                inputs = [theano.tensor.matrix()]
                outputs = [theano.tensor.matrix()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inp, grads):
                return gval,
        a1 = O().make_node()
        g = grad_sources_inputs([(a1.outputs[0], one)], None)
        self.assertTrue(g[a1.inputs[0]] is gval) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_gradient.py

示例9: test_1in_Nout

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_1in_Nout(self):
        """Test grad is called correctly for a 1-to-many op"""
        gval = theano.tensor.matrix()

        class O(gof.op.Op):
            __props__ = ()

            def make_node(self):
                inputs = [theano.tensor.matrix()]
                outputs = [theano.tensor.scalar(), theano.tensor.scalar()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inp, grads):
                x, = inp
                gz1, gz2 = grads
                return gval,
        a1 = O().make_node()
        g = grad_sources_inputs([(a1.outputs[0], one)], None)
        self.assertTrue(g[a1.inputs[0]] is gval) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_gradient.py

示例10: test_Nin_Nout

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_Nin_Nout(self):
        """Test grad is called correctly for a many-to-many op"""
        gval0 = theano.tensor.matrix()
        gval1 = theano.tensor.matrix()

        class O(gof.op.Op):
            __props__ = ()

            def make_node(self):
                inputs = [theano.tensor.matrix(), theano.tensor.matrix()]
                outputs = [theano.tensor.matrix(), theano.tensor.matrix()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inp, grads):
                return gval0, gval1
        a1 = O().make_node()
        g = grad_sources_inputs([(a1.outputs[0], one)], None)
        self.assertTrue(g[a1.inputs[0]] is gval0)
        self.assertTrue(g[a1.inputs[1]] is gval1) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_gradient.py

示例11: test_unimplemented_grad_grad

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_unimplemented_grad_grad(self):
        # tests that unimplemented grads are caught in the grad method

        class DummyOp(gof.Op):
            __props__ = ()

            def make_node(self, x):
                return gof.Apply(self, [x], [x.type()])

            def grad(self, inputs, output_grads):
                return [theano.gradient.grad_not_implemented(self, 0, inputs[0])]

        a = theano.tensor.scalar()
        b = DummyOp()(a)

        self.assertRaises(TypeError, theano.gradient.grad, b, a) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_gradient.py

示例12: test_dxdx

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_dxdx():

    # Tests that the gradient of a scalar with respect to itself is 1
    # I use an integer in this case because people keep changing this
    # gradient to be 0 on integers but according to our interpretation
    # of the gradient as defined in the Op contract, it should be 1.
    # If you feel the need to change this unit test you are probably
    # modifying the Op contract and should definitely get the approval
    # of multiple people on theano-dev.

    x = theano.tensor.iscalar()
    g = theano.tensor.grad(x, x)

    g = g.eval({x: 12})

    assert np.allclose(g, 1.) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:test_gradient.py

示例13: test_undefined_cost_grad

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_undefined_cost_grad():

        # Tests that if we say the cost is not differentiable via the
        # known_grads mechanism, it is treated as such by the rest of the
        # system.
        # This is so that Ops that are built around minigraphs like OpFromGraph
        # and scan can implement Op.grad by passing ograds to known_grads

        x = theano.tensor.iscalar()
        y = theano.tensor.iscalar()
        cost = x + y
        assert cost.dtype in theano.tensor.discrete_dtypes
        try:
            theano.tensor.grad(cost, [x, y], known_grads={cost: NullType()()})
        except theano.gradient.NullTypeGradError:
            return
        raise AssertionError("An undefined gradient has been ignored.") 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_gradient.py

示例14: test_wrong_rval_len1

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_wrong_rval_len1(self):
        """Test that it is not ok to return the wrong number of gradient terms
        """
        class retOne(gof.op.Op):
            __props__ = ()
            def make_node(self, *inputs):
                outputs = [theano.tensor.vector()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inputs, grads):
                return [inputs[0].zeros_like()]

        i = theano.tensor.vector()
        j = theano.tensor.vector()
        a1 = retOne().make_node(i)
        grad_sources_inputs([(a1.out, one)], None)
        a2 = retOne().make_node(i, j)
        self.assertRaises(ValueError, grad_sources_inputs,
                [(a2.out, one)], None) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:test_gradient.py

示例15: test_1in_1out

# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Op [as 別名]
def test_1in_1out(self):
        """Test grad is called correctly for a 1-to-1 op"""
        gval = theano.tensor.matrix()

        class O(gof.op.Op):
            __props__ = ()
            def make_node(self):
                inputs = [theano.tensor.matrix()]
                outputs = [theano.tensor.matrix()]
                return gof.Apply(self, inputs, outputs)

            def grad(self, inp, grads):
                return gval,
        a1 = O().make_node()
        g = grad_sources_inputs([(a1.outputs[0], one)], None)
        self.assertTrue(g[a1.inputs[0]] is gval) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:18,代碼來源:test_gradient.py


注:本文中的theano.gof.Op方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。