本文整理匯總了Python中theano.gof.Apply方法的典型用法代碼示例。如果您正苦於以下問題:Python gof.Apply方法的具體用法?Python gof.Apply怎麽用?Python gof.Apply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.gof
的用法示例。
在下文中一共展示了gof.Apply方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, x, y):
x, y = sparse.as_sparse_variable(x), tensor.as_tensor_variable(y)
out_dtype = scalar.upcast(x.type.dtype, y.type.dtype)
if self.inplace:
assert out_dtype == y.dtype
indices, indptr, data = csm_indices(x), csm_indptr(x), csm_data(x)
# We either use CSC or CSR depending on the format of input
assert self.format == x.type.format
# The magic number two here arises because L{scipy.sparse}
# objects must be matrices (have dimension 2)
assert y.type.ndim == 2
out = tensor.TensorType(dtype=out_dtype,
broadcastable=y.type.broadcastable)()
return gof.Apply(self,
[data, indices, indptr, y],
[out])
示例2: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, x):
x = tensor.as_tensor_variable(x)
if x.ndim > 2:
raise TypeError(
"Theano does not have sparse tensor types with more "
"than 2 dimensions, but %s.ndim = %i" % (x, x.ndim))
elif x.ndim == 1:
x = x.dimshuffle('x', 0)
elif x.ndim == 0:
x = x.dimshuffle('x', 'x')
else:
assert x.ndim == 2
return gof.Apply(self,
[x],
[SparseType(dtype=x.type.dtype,
format=self.format)()])
示例3: c_code_cache_version_apply
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def c_code_cache_version_apply(self, node):
version = [12] # the version corresponding to the c code in this Op
# now we insert versions for the ops on which we depend...
scalar_node = Apply(
self.scalar_op,
[get_scalar_type(dtype=input.type.dtype).make_variable()
for input in node.inputs],
[get_scalar_type(dtype=output.type.dtype).make_variable()
for output in node.outputs])
version.append(self.scalar_op.c_code_cache_version_apply(scalar_node))
for i in node.inputs + node.outputs:
version.append(get_scalar_type(dtype=i.type.dtype).c_code_cache_version())
version.append(('openmp', self.openmp))
if all(version):
return tuple(version)
else:
return ()
示例4: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, x, b, y_idx):
x = tensor.as_tensor_variable(x)
b = tensor.as_tensor_variable(b)
y_idx = tensor.as_tensor_variable(y_idx)
if x.type.ndim != 2 \
or x.type.dtype not in tensor.float_dtypes:
raise ValueError('x must be 2-d tensor of floats', x.type)
if b.type.ndim != 1 \
or x.type.dtype not in tensor.float_dtypes:
raise ValueError('b must be 1-d tensor of floats', b.type)
if y_idx.type.ndim != 1 \
or y_idx.type.dtype not in tensor.discrete_dtypes:
raise ValueError('y_idx must be 1-d tensor of [u]ints', y_idx.type)
# TODO: Is this correct? It used to be y, not y_idx
nll = tensor.TensorType(x.type.dtype,
y_idx.type.broadcastable).make_variable()
# nll = TensorType(x.dtype, y.broadcastable)
sm = x.type()
am = y_idx.type()
return Apply(self, [x, b, y_idx], [nll, sm, am])
示例5: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, img, kern):
# Make sure both inputs are Variables with the same Type
if not isinstance(img, theano.Variable):
img = as_tensor_variable(img)
if not isinstance(kern, theano.Variable):
kern = as_tensor_variable(kern)
ktype = img.type.clone(dtype=kern.dtype,
broadcastable=kern.broadcastable)
kern = ktype.filter_variable(kern)
if img.type.ndim != 4:
raise TypeError('img must be 4D tensor')
if kern.type.ndim != 4:
raise TypeError('kern must be 4D tensor')
broadcastable = [img.broadcastable[0],
kern.broadcastable[0],
False, False]
output = img.type.clone(broadcastable=broadcastable)()
return Apply(self, [img, kern], [output])
示例6: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, a, val, offset):
a = tensor.as_tensor_variable(a)
val = tensor.as_tensor_variable(val)
offset = tensor.as_tensor_variable(offset)
if a.ndim != 2:
raise TypeError('%s: first parameter must have exactly'
' two dimensions' % self.__class__.__name__)
elif val.ndim != 0:
raise TypeError('%s: second parameter must be a scalar'
% self.__class__.__name__)
elif offset.ndim != 0:
raise TypeError('%s: third parameter must be a scalar'
% self.__class__.__name__)
val = tensor.cast(val, dtype=scalar.upcast(a.dtype, val.dtype))
if val.dtype != a.dtype:
raise TypeError('%s: type of second parameter must be the same'
' as the first\'s' % self.__class__.__name__)
elif offset.dtype[:3] != 'int':
raise TypeError('%s: type of third parameter must be as integer'
' use theano.tensor.cast( input, \'int32/int64\')'
% self.__class__.__name__)
return gof.Apply(self, [a, val, offset], [a.type()])
示例7: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, x):
x = as_sparse_variable(x)
return gof.Apply(self, [x], [x.type()])
示例8: make_node
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def make_node(self, x):
x = as_sparse_variable(x)
return gof.Apply(self, [x], [x.type()])
示例9: as_sparse_variable
# 需要導入模塊: from theano import gof [as 別名]
# 或者: from theano.gof import Apply [as 別名]
def as_sparse_variable(x, name=None):
"""
Wrapper around SparseVariable constructor to construct
a Variable with a sparse matrix with the same dtype and
format.
Parameters
----------
x
A sparse matrix.
Returns
-------
object
SparseVariable version of `x`.
"""
# TODO
# Verify that sp is sufficiently sparse, and raise a
# warning if it is not
if isinstance(x, gof.Apply):
if len(x.outputs) != 1:
raise ValueError("It is ambiguous which output of a "
"multi-output Op has to be fetched.", x)
else:
x = x.outputs[0]
if isinstance(x, gof.Variable):
if not isinstance(x.type, SparseType):
raise TypeError("Variable type field must be a SparseType.", x,
x.type)
return x
try:
return constant(x, name=name)
except TypeError:
raise TypeError("Cannot convert %s to SparseType" % x, type(x))