本文整理匯總了Python中theano.In方法的典型用法代碼示例。如果您正苦於以下問題:Python theano.In方法的具體用法?Python theano.In怎麽用?Python theano.In使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano
的用法示例。
在下文中一共展示了theano.In方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_sparse_shared_memory
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_sparse_shared_memory():
# Note : There are no inplace ops on sparse matrix yet. If one is
# someday implemented, we could test it here.
a = random_lil((3, 4), 'float32', 3).tocsr()
m1 = random_lil((4, 4), 'float32', 3).tocsr()
m2 = random_lil((4, 4), 'float32', 3).tocsr()
x = SparseType('csr', dtype='float32')()
y = SparseType('csr', dtype='float32')()
sdot = theano.sparse.structured_dot
z = sdot(x * 3, m1) + sdot(y * 2, m2)
f = theano.function([theano.In(x, mutable=True),
theano.In(y, mutable=True)], z, mode='FAST_RUN')
def f_(x, y, m1=m1, m2=m2):
return ((x * 3) * m1) + ((y * 2) * m2)
assert SparseType.may_share_memory(a, a) # This is trivial
result = f(a, a)
result_ = f_(a, a)
assert (result_.todense() == result.todense()).all()
示例2: test_state_access
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_state_access(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
f = function([x, In(a, value=1.0, name='a'), In(s, value=0.0, update=s + a * x)], s + a * x)
self.assertTrue(f[a] == 1.0)
self.assertTrue(f[s] == 0.0)
self.assertTrue(f(3.0) == 3.0)
self.assertTrue(f(3.0, a=2.0) == 9.0) # 3.0 + 2*3.0
self.assertTrue(f[a] == 1.0) # state hasn't changed permanently, we just overrode it last line
self.assertTrue(f[s] == 9.0)
f[a] = 5.0
self.assertTrue(f[a] == 5.0)
self.assertTrue(f(3.0) == 24.0) # 9 + 3*5
self.assertTrue(f[s] == 24.0)
示例3: test_copy
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_copy(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
f = function([x, In(a, value=1.0, name='a'),
In(s, value=0.0, update=s + a * x, mutable=True)],
s + a * x)
g = copy.copy(f)
# if they both return, assume that they return equivalent things.
self.assertFalse(g.container[x].storage is f.container[x].storage)
self.assertFalse(g.container[a].storage is f.container[a].storage)
self.assertFalse(g.container[s].storage is f.container[s].storage)
self.assertFalse(g.value[a] is not f.value[a]) # should not have been copied
self.assertFalse(g.value[s] is f.value[s]) # should have been copied because it is mutable.
self.assertFalse((g.value[s] != f.value[s]).any()) # its contents should be identical
self.assertTrue(f(2, 1) == g(2)) # they should be in sync, default value should be copied.
self.assertTrue(f(2, 1) == g(2)) # they should be in sync, default value should be copied.
f(1, 2) # put them out of sync
self.assertFalse(f(1, 2) == g(1, 2)) # they should not be equal anymore.
示例4: test_shared_state0
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_shared_state0(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
f = function([x, In(a, value=1.0, name='a'),
In(s, value=0.0, update=s + a * x, mutable=True)],
s + a * x)
g = function([x, In(a, value=1.0, name='a'),
In(s, value=f.container[s], update=s - a * x, mutable=True)],
s + a * x)
f(1, 2)
self.assertTrue(f[s] == 2)
self.assertTrue(g[s] == 2)
g(1, 2)
self.assertTrue(f[s] == 0)
self.assertTrue(g[s] == 0)
示例5: test_shared_state2
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_shared_state2(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
f = function([x, In(a, value=1.0, name='a'), In(s, value=0.0, update=s + a * x,
mutable=False)], s + a * x)
g = function([x, In(a, value=1.0, name='a'), In(s, value=f.container[s])], s + a * x)
f(1, 2)
self.assertTrue(f[s] == 2)
self.assertTrue(g[s] == 2)
f(1, 2)
self.assertTrue(f[s] == 4)
self.assertTrue(g[s] == 4)
g(1, 2) # has no effect on state
self.assertTrue(f[s] == 4)
self.assertTrue(g[s] == 4)
示例6: test_shared_state_not_implicit
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_shared_state_not_implicit(self):
# This test is taken from the documentation in
# doc/topics/function.txt. If it does not pass anymore and yet the
# behavior is still intended the doc and the test should both be
# updated accordingly.
x, s = T.scalars('xs')
inc = function([x, In(s, update=(s + x), value=10.0)], [])
dec = function([x, In(s, update=(s - x), value=inc.container[s],
implicit=False)], [])
self.assertTrue(dec[s] is inc[s])
inc[s] = 2
self.assertTrue(dec[s] == 2)
dec(1)
self.assertTrue(inc[s] == 1)
dec(1, 0)
self.assertTrue(inc[s] == -1)
self.assertTrue(dec[s] == -1)
示例7: test_borrow_input
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_borrow_input(self):
"""
Tests that the contract for io.In is respected. When borrow=False, it should be
impossible for outputs to be aliased to the input variables provided by the user,
either through a view-map or a destroy map. New tests should be added in the future
when borrow=True is implemented.
"""
a = T.dmatrix()
aval = numpy.random.rand(3, 3)
# when borrow=False, test that a destroy map cannot alias output to input
f = theano.function([In(a, borrow=False)], Out(a + 1, borrow=True))
assert numpy.all(f(aval) == aval + 1)
assert not numpy.may_share_memory(aval, f(aval))
# when borrow=False, test that a viewmap cannot alias output to input
f = theano.function([In(a, borrow=False)], Out(a[0, :], borrow=True))
assert numpy.all(f(aval) == aval[0, :])
assert not numpy.may_share_memory(aval, f(aval))
示例8: __init__
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def __init__(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
v = T.vector('v')
self.s = s
self.x = x
self.v = v
self.e = a * x + s
self.f1 = function([x, In(a, value=1.0, name='a'),
In(s, value=0.0, update=s + a * x, mutable=True)],
s + a * x)
self.f2 = function([x, In(a, value=1.0, name='a'),
In(s, value=self.f1.container[s], update=s + a * x,
mutable=True)],
s + a * x)
示例9: test_doc
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_doc(self):
"""Ensure the code given in pfunc.txt works as expected"""
# Example #1.
a = lscalar()
b = shared(1)
f1 = pfunc([a], (a + b))
f2 = pfunc([In(a, value=44)], a + b, updates={b: b + 1})
self.assertTrue(b.get_value() == 1)
self.assertTrue(f1(3) == 4)
self.assertTrue(f2(3) == 4)
self.assertTrue(b.get_value() == 2)
self.assertTrue(f1(3) == 5)
b.set_value(0)
self.assertTrue(f1(3) == 3)
# Example #2.
a = tensor.lscalar()
b = shared(7)
f1 = pfunc([a], a + b)
f2 = pfunc([a], a * b)
self.assertTrue(f1(5) == 12)
b.set_value(8)
self.assertTrue(f1(5) == 13)
self.assertTrue(f2(4) == 32)
示例10: test_param_strict
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_param_strict(self):
a = tensor.dvector()
b = shared(7)
out = a + b
f = pfunc([In(a, strict=False)], [out])
# works, rand generates float64 by default
f(numpy.random.rand(8))
# works, casting is allowed
f(numpy.array([1, 2, 3, 4], dtype='int32'))
f = pfunc([In(a, strict=True)], [out])
try:
# fails, f expects float64
f(numpy.array([1, 2, 3, 4], dtype='int32'))
except TypeError:
pass
示例11: test_param_allow_downcast_floatX
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_param_allow_downcast_floatX(self):
a = tensor.fscalar('a')
b = tensor.fscalar('b')
c = tensor.fscalar('c')
f = pfunc([In(a, allow_downcast=True),
In(b, allow_downcast=False),
In(c, allow_downcast=None)],
(a + b + c))
# If the values can be accurately represented, everything is OK
assert numpy.all(f(0, 0, 0) == 0)
# If allow_downcast is True, idem
assert numpy.allclose(f(0.1, 0, 0), 0.1)
# If allow_downcast is False, nope
self.assertRaises(TypeError, f, 0, 0.1, 0)
# If allow_downcast is None, it should work iff floatX=float32
if config.floatX == 'float32':
assert numpy.allclose(f(0, 0, 0.1), 0.1)
else:
self.assertRaises(TypeError, f, 0, 0, 0.1)
示例12: test_param_allow_downcast_vector_floatX
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_param_allow_downcast_vector_floatX(self):
a = tensor.fvector('a')
b = tensor.fvector('b')
c = tensor.fvector('c')
f = pfunc([In(a, allow_downcast=True),
In(b, allow_downcast=False),
In(c, allow_downcast=None)],
(a + b + c))
# If the values can be accurately represented, everything is OK
z = [0]
assert numpy.all(f(z, z, z) == 0)
# If allow_downcast is True, idem
assert numpy.allclose(f([0.1], z, z), 0.1)
# If allow_downcast is False, nope
self.assertRaises(TypeError, f, z, [0.1], z)
# If allow_downcast is None, like False
self.assertRaises(TypeError, f, z, z, [0.1])
示例13: test_vm_gc
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_vm_gc():
"""This already caused a bug in the trunk of Theano.
The bug was introduced in the trunk on July 5th, 2012 and fixed on
July 30th.
"""
x = theano.tensor.vector()
p = RunOnce()(x)
mode = theano.Mode(linker=theano.gof.vm.VM_Linker(lazy=True))
f = theano.function([theano.In(x, mutable=True)], [p + 1, p + 2],
mode=mode)
f([1, 2, 3])
p = RunOnce()(x)
pp = p + p
f = theano.function([x], [pp + pp],
mode=mode)
f([1, 2, 3])
示例14: test_append_inplace
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_append_inplace(self):
mySymbolicMatricesList = TypedListType(T.TensorType(
theano.config.floatX, (False, False)))()
mySymbolicMatrix = T.matrix()
z = Append()(mySymbolicMatricesList, mySymbolicMatrix)
m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt")
f = theano.function([In(mySymbolicMatricesList, borrow=True,
mutable=True),
In(mySymbolicMatrix, borrow=True,
mutable=True)], z, accept_inplace=True, mode=m)
self.assertTrue(f.maker.fgraph.toposort()[0].op.inplace)
x = rand_ranged_matrix(-1000, 1000, [100, 101])
y = rand_ranged_matrix(-1000, 1000, [100, 101])
self.assertTrue(numpy.array_equal(f([x], y), [x, y]))
示例15: test_extend_inplace
# 需要導入模塊: import theano [as 別名]
# 或者: from theano import In [as 別名]
def test_extend_inplace(self):
mySymbolicMatricesList1 = TypedListType(T.TensorType(
theano.config.floatX, (False, False)))()
mySymbolicMatricesList2 = TypedListType(T.TensorType(
theano.config.floatX, (False, False)))()
z = Extend()(mySymbolicMatricesList1, mySymbolicMatricesList2)
m = theano.compile.mode.get_default_mode().including("typed_list_inplace_opt")
f = theano.function([In(mySymbolicMatricesList1, borrow=True,
mutable=True), mySymbolicMatricesList2],
z, mode=m)
self.assertTrue(f.maker.fgraph.toposort()[0].op.inplace)
x = rand_ranged_matrix(-1000, 1000, [100, 101])
y = rand_ranged_matrix(-1000, 1000, [100, 101])
self.assertTrue(numpy.array_equal(f([x], [y]), [x, y]))