本文整理匯總了Python中tflearn.regression方法的典型用法代碼示例。如果您正苦於以下問題:Python tflearn.regression方法的具體用法?Python tflearn.regression怎麽用?Python tflearn.regression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tflearn
的用法示例。
在下文中一共展示了tflearn.regression方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resnext
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
net = input_data(shape=[None, width, height, 3], name='input')
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.layers.conv.resnext_block(net, n, 16, 32)
net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 32, 32)
net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
net = tflearn.resnext_block(net, n-1, 64, 32)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, output, activation='softmax')
opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=opt,
loss='categorical_crossentropy')
model = tflearn.DNN(net,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例2: test_feed_dict_no_None
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def test_feed_dict_no_None(self):
X = [[0., 0., 0., 0.], [1., 1., 1., 1.], [0., 0., 1., 0.], [1., 1., 1., 0.]]
Y = [[1., 0.], [0., 1.], [1., 0.], [0., 1.]]
with tf.Graph().as_default():
g = tflearn.input_data(shape=[None, 4], name="X_in")
g = tflearn.reshape(g, new_shape=[-1, 2, 2, 1])
g = tflearn.conv_2d(g, 4, 2)
g = tflearn.conv_2d(g, 4, 1)
g = tflearn.max_pool_2d(g, 2)
g = tflearn.fully_connected(g, 2, activation='softmax')
g = tflearn.regression(g, optimizer='sgd', learning_rate=1.)
m = tflearn.DNN(g)
def do_fit():
m.fit({"X_in": X, 'non_existent': X}, Y, n_epoch=30, snapshot_epoch=False)
self.assertRaisesRegexp(Exception, "Feed dict asks for variable named 'non_existent' but no such variable is known to exist", do_fit)
示例3: build_simple_model
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def build_simple_model(self):
"""Build a simple model for test
Returns:
DNN, [ (input layer name, input placeholder, input data) ], Target data
"""
inputPlaceholder1, inputPlaceholder2 = \
tf.placeholder(tf.float32, (1, 1), name = "input1"), tf.placeholder(tf.float32, (1, 1), name = "input2")
input1 = tflearn.input_data(placeholder = inputPlaceholder1)
input2 = tflearn.input_data(placeholder = inputPlaceholder2)
network = tflearn.merge([ input1, input2 ], "sum")
network = tflearn.reshape(network, (1, 1))
network = tflearn.fully_connected(network, 1)
network = tflearn.regression(network)
return (
tflearn.DNN(network),
[ ("input1:0", inputPlaceholder1, self.INPUT_DATA_1), ("input2:0", inputPlaceholder2, self.INPUT_DATA_2) ],
self.TARGET,
)
示例4: createDNNLayers
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def createDNNLayers(self, x, y):
###############################################################
#
# Sets up the DNN layers, configuration in required/confs.json
#
###############################################################
net = tflearn.input_data(shape=[None, len(x[0])])
for i in range(self._confs["NLU"]['FcLayers']):
net = tflearn.fully_connected(net, self._confs["NLU"]['FcUnits'])
net = tflearn.fully_connected(net, len(y[0]), activation=str(self._confs["NLU"]['Activation']))
if self._confs["NLU"]['Regression']:
net = tflearn.regression(net)
return net
示例5: test_case1
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def test_case1():
x = [1,2,3]
y = [0.01,0.99]
# 多組x作為輸入樣本
X = np.array(np.repeat([x], 1, axis=0))
# 多組y作為樣本的y值
Y = np.array(np.repeat([y], 1, axis=0))
#X = np.array([x1,x2], dtype=np.float32)
#Y = np.array([y1,y2])
# 這裏的第二個數對應了x是多少維的向量
net = tflearn.input_data(shape=[None, 3])
#net = tflearn.fully_connected(net, 32)
net = tflearn.fully_connected(net, 2)
# 這裏的第二個參數對應了輸出的y是多少維的向量
#net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.fit(X, Y, n_epoch=1000, batch_size=1, show_metric=True, snapshot_epoch=False)
pred = model.predict([x])
print(pred)
示例6: build_estimator
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def build_estimator(model_dir, model_type, embeddings,index_map, combination_method):
"""Build an estimator."""
# Continuous base columns.
node1 = tf.contrib.layers.real_valued_column("node1")
deep_columns = [node1]
if model_type == "regressor":
tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.5)
if combination_method == 'concatenate':
net = tflearn.input_data(shape=[None, embeddings.shape[1]*2])
else:
net = tflearn.input_data(shape=[None, embeddings.shape[1]] )
net = tflearn.fully_connected(net, 100, activation='relu')
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy')
m = tflearn.DNN(net)
else:
m = tf.contrib.learn.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[100])
return m
示例7: get_network
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def get_network(frames, input_size, num_classes):
"""Create our LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
net = tflearn.lstm(net, 128, dropout=0.8, return_seq=True)
net = tflearn.lstm(net, 128)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy', name="output1")
return net
示例8: get_network_deep
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def get_network_deep(frames, input_size, num_classes):
"""Create a deeper LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
net = tflearn.lstm(net, 64, dropout=0.2, return_seq=True)
net = tflearn.lstm(net, 64, dropout=0.2, return_seq=True)
net = tflearn.lstm(net, 64, dropout=0.2)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy', name="output1")
return net
示例9: get_network_wide
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def get_network_wide(frames, input_size, num_classes):
"""Create a wider LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
net = tflearn.lstm(net, 256, dropout=0.2)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy', name='output1')
return net
示例10: get_network_wider
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def get_network_wider(frames, input_size, num_classes):
"""Create a wider LSTM"""
net = tflearn.input_data(shape=[None, frames, input_size])
net = tflearn.lstm(net, 512, dropout=0.2)
net = tflearn.fully_connected(net, num_classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam',
loss='categorical_crossentropy', name='output1')
return net
示例11: vgg_net_19
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def vgg_net_19(width, height):
network = input_data(shape=[None, height, width, 3], name='input')
network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
opt = Momentum(learning_rate=0, momentum = 0.9)
network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
model = DNN(network, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
return model
#model of vgg-19 for testing of the activations
#rename the output you want to test, connect it to the next layer and change the output layer at the bottom (model = DNN(...))
#make sure to use the correct test function (depending if your output is a tensor or a vector)
示例12: vgg_net_19_activations
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def vgg_net_19_activations(width, height):
network = input_data(shape=[None, height, width, 3], name='input')
network1 = conv_2d(network, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network2 = conv_2d(network1, 64, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network2, 2, strides=2)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 128, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 256, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = conv_2d(network, 512, 3, activation = 'relu', regularizer='L2', weight_decay=5e-4)
network = max_pool_2d(network, 2, strides=2)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 4096, activation='relu', weight_decay=5e-4)
network = dropout(network, keep_prob=0.5)
network = fully_connected(network, 1000, activation='softmax', weight_decay=5e-4)
opt = Momentum(learning_rate=0, momentum = 0.9)
network = regression(network, optimizer=opt, loss='categorical_crossentropy', name='targets')
model = DNN(network1, checkpoint_path='', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='')
return model
示例13: sentnet_color_2d
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def sentnet_color_2d(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
network = input_data(shape=[None, width, height, 3], name='input')
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network,
max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例14: sentnet_LSTM_gray
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def sentnet_LSTM_gray(width, height, frame_count, lr, output=9):
network = input_data(shape=[None, width, height], name='input')
#network = tflearn.input_data(shape=[None, 28, 28], name='input')
network = tflearn.lstm(network, 128, return_seq=True)
network = tflearn.lstm(network, 128)
network = tflearn.fully_connected(network, 9, activation='softmax')
network = tflearn.regression(network, optimizer='adam',
loss='categorical_crossentropy', name="output1")
model = tflearn.DNN(network, checkpoint_path='model_lstm',
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model
示例15: sentnet_color
# 需要導入模塊: import tflearn [as 別名]
# 或者: from tflearn import regression [as 別名]
def sentnet_color(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'):
network = input_data(shape=[None, width, height,3, 1], name='input')
network = conv_3d(network, 96, 11, strides=4, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
network = conv_3d(network, 256, 5, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 384, 3, activation='relu')
network = conv_3d(network, 256, 3, activation='relu')
network = max_pool_3d(network, 3, strides=2)
#network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, output, activation='softmax')
network = regression(network, optimizer='momentum',
loss='categorical_crossentropy',
learning_rate=lr, name='targets')
model = tflearn.DNN(network, checkpoint_path=model_name,
max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log')
return model