本文整理匯總了Python中tflearn.data_utils.to_categorical方法的典型用法代碼示例。如果您正苦於以下問題:Python data_utils.to_categorical方法的具體用法?Python data_utils.to_categorical怎麽用?Python data_utils.to_categorical使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tflearn.data_utils
的用法示例。
在下文中一共展示了data_utils.to_categorical方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pad_data
# 需要導入模塊: from tflearn import data_utils [as 別名]
# 或者: from tflearn.data_utils import to_categorical [as 別名]
def pad_data(data, pad_seq_len):
"""
Padding each sentence of research data according to the max sentence length.
Return the padded data and data labels.
Args:
data: The research data
pad_seq_len: The max sentence length of research data
Returns:
data_front: The padded front data
data_behind: The padded behind data
onehot_labels: The one-hot labels
"""
data_front = pad_sequences(data.front_tokenindex, maxlen=pad_seq_len, value=0.)
data_behind = pad_sequences(data.behind_tokenindex, maxlen=pad_seq_len, value=0.)
onehot_labels = to_categorical(data.labels, nb_classes=2)
return data_front, data_behind, onehot_labels
示例2: prep_train_test
# 需要導入模塊: from tflearn import data_utils [as 別名]
# 或者: from tflearn.data_utils import to_categorical [as 別名]
def prep_train_test(pos_x, neg_x, dev_pct):
np.random.seed(10)
shuffle_indices=np.random.permutation(np.arange(len(pos_x)))
pos_x_shuffled = pos_x[shuffle_indices]
dev_idx = -1 * int(dev_pct * float(len(pos_x)))
pos_train = pos_x_shuffled[:dev_idx]
pos_test = pos_x_shuffled[dev_idx:]
np.random.seed(10)
shuffle_indices=np.random.permutation(np.arange(len(neg_x)))
neg_x_shuffled = neg_x[shuffle_indices]
dev_idx = -1 * int(dev_pct * float(len(neg_x)))
neg_train = neg_x_shuffled[:dev_idx]
neg_test = neg_x_shuffled[dev_idx:]
x_train = np.array(list(pos_train) + list(neg_train))
y_train = len(pos_train)*[1] + len(neg_train)*[0]
x_test = np.array(list(pos_test) + list(neg_test))
y_test = len(pos_test)*[1] + len(neg_test)*[0]
y_train = to_categorical(y_train, nb_classes=2)
y_test = to_categorical(y_test, nb_classes=2)
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(x_train)))
x_train = x_train[shuffle_indices]
y_train = y_train[shuffle_indices]
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(x_test)))
x_test = x_test[shuffle_indices]
y_test = y_test[shuffle_indices]
print("Train Mal/Ben split: {}/{}".format(len(pos_train), len(neg_train)))
print("Test Mal/Ben split: {}/{}".format(len(pos_test), len(neg_test)))
print("Train/Test split: {}/{}".format(len(y_train), len(y_test)))
print("Train/Test split: {}/{}".format(len(x_train), len(x_test)))
return x_train, y_train, x_test, y_test
示例3: load_data
# 需要導入模塊: from tflearn import data_utils [as 別名]
# 或者: from tflearn.data_utils import to_categorical [as 別名]
def load_data(dirname="cifar-10-batches-py", one_hot=False):
X_train = []
Y_train = []
for i in range(1, 6):
fpath = os.path.join(dirname, 'data_batch_' + str(i))
data, labels = load_batch(fpath)
if i == 1:
X_train = data
Y_train = labels
else:
X_train = np.concatenate([X_train, data], axis=0)
Y_train = np.concatenate([Y_train, labels], axis=0)
fpath = os.path.join(dirname, 'test_batch')
X_test, Y_test = load_batch(fpath)
X_train = np.dstack((X_train[:, :1024], X_train[:, 1024:2048],
X_train[:, 2048:])) / 255.
X_train = np.reshape(X_train, [-1, 32, 32, 3])
X_test = np.dstack((X_test[:, :1024], X_test[:, 1024:2048],
X_test[:, 2048:])) / 255.
X_test = np.reshape(X_test, [-1, 32, 32, 3])
if one_hot:
Y_train = to_categorical(Y_train, 10)
Y_test = to_categorical(Y_test, 10)
return (X_train, Y_train), (X_test, Y_test)
示例4: get_data
# 需要導入模塊: from tflearn import data_utils [as 別名]
# 或者: from tflearn.data_utils import to_categorical [as 別名]
def get_data(input_data_dump, num_frames_per_video, labels, ifTrain):
"""Get the data from our saved predictions or pooled features."""
# Local vars.
X = []
y = []
temp_list = deque()
# Open and get the features.
with open(input_data_dump, 'rb') as fin:
frames = pickle.load(fin)
for i, frame in enumerate(frames):
features = frame[0]
actual = frame[1].lower()
# frameCount = frame[2]
# Convert our labels into binary.
actual = labels[actual]
# Add to the queue.
if len(temp_list) == num_frames_per_video - 1:
temp_list.append(features)
flat = list(temp_list)
X.append(np.array(flat))
y.append(actual)
temp_list.clear()
else:
temp_list.append(features)
continue
print("Class Name\tNumeric Label")
for key in labels:
print("%s\t\t%d" % (key, labels[key]))
# Numpy.
X = np.array(X)
y = np.array(y)
print("Dataset shape: ", X.shape)
# One-hot encoded categoricals.
y = to_categorical(y, len(labels))
# Split into train and test.
if ifTrain:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
return X_train, X_test, y_train, y_test
else:
return X, y
示例5: get_data
# 需要導入模塊: from tflearn import data_utils [as 別名]
# 或者: from tflearn.data_utils import to_categorical [as 別名]
def get_data(filename, num_frames, num_classes, input_length):
"""Get the data from our saved predictions or pooled features."""
# Local vars.
X = []
y = []
temp_list = deque()
# Open and get the features.
with open(filename, 'rb') as fin:
frames = pickle.load(fin)
for i, frame in enumerate(frames):
features = frame[0]
actual = frame[1]
# Convert our labels into binary.
if actual == 'ad':
actual = 1
else:
actual = 0
# Add to the queue.
if len(temp_list) == num_frames - 1:
temp_list.append(features)
flat = list(temp_list)
X.append(np.array(flat))
y.append(actual)
temp_list.popleft()
else:
temp_list.append(features)
continue
print("Total dataset size: %d" % len(X))
# Numpy.
X = np.array(X)
y = np.array(y)
# Reshape.
X = X.reshape(-1, num_frames, input_length)
# One-hot encoded categoricals.
y = to_categorical(y, num_classes)
# Split into train and test.
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1, random_state=42)
return X_train, X_test, y_train, y_test