當前位置: 首頁>>代碼示例>>Python>>正文


Python tf_util.dropout方法代碼示例

本文整理匯總了Python中tf_util.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python tf_util.dropout方法的具體用法?Python tf_util.dropout怎麽用?Python tf_util.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tf_util的用法示例。


在下文中一共展示了tf_util.dropout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(pcs1, pcs2, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = pcs1.get_shape()[0].value
    end_points = {}

    with tf.variable_scope("siamese"):
        embedding_output1, center_mean1, s1_pred_center1, s2_pred_center1, s2_pred_angle_logits1 = get_embedding_net(pcs1, is_training, end_points, bn_decay)
    with tf.variable_scope("siamese", reuse=tf.AUTO_REUSE):
        embedding_output2, center_mean2, s1_pred_center2, s2_pred_center2, s2_pred_angle_logits2 = get_embedding_net(pcs2, is_training, end_points, bn_decay)
    embedding_output_combined = tf.concat([embedding_output1, embedding_output2], axis=3)

    end_points['pred_s1_pc1centers'] = s1_pred_center1
    end_points['pred_s1_pc2centers'] = s1_pred_center2
    end_points['pred_s2_pc1centers'] = s2_pred_center1
    end_points['pred_s2_pc2centers'] = s2_pred_center2
    end_points['pred_pc1angle_logits'] = s2_pred_angle_logits1
    end_points['pred_pc2angle_logits'] = s2_pred_angle_logits2

    net = tf.reshape(embedding_output_combined, [batch_size, -1])
    net = get_mlp(net, [*cfg.model.options.remaining_transform_prediction[0], 3 + cfg.model.angles.num_bins * 2], '', is_training, bn_decay, dropout=cfg.model.options.remaining_transform_prediction[1])
    end_points['pred_translations'] = net[:, :3] + (s2_pred_center2 - s2_pred_center1)
    end_points['pred_remaining_angle_logits'] = net[:, 3:]

    return end_points 
開發者ID:grossjohannes,項目名稱:AlignNet-3D,代碼行數:26,代碼來源:tp8.py

示例2: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = None
    end_points['l0_xyz'] = l0_xyz

    # Set abstraction layers
    # Note: When using NCHW for layer 2, we see increased GPU memory usage (in TF1.4).
    # So we only use NCHW for layer 1 until this issue can be resolved.
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:27,代碼來源:pointnet2_cls_ssg.py

示例3: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Part segmentation PointNet, input is BxNx6 (XYZ NormalX NormalY NormalZ), output Bx50 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Feature Propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:27,代碼來源:pointnet2_part_seg.py

示例4: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(point_cloud, is_training, bn_decay=None):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}

    l0_xyz = point_cloud
    l0_points = None

    # Set abstraction layers
    l1_xyz, l1_points = pointnet_sa_module_msg(l0_xyz, l0_points, 512, [0.1,0.2,0.4], [16,32,128], [[32,32,64], [64,64,128], [64,96,128]], is_training, bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points = pointnet_sa_module_msg(l1_xyz, l1_points, 128, [0.2,0.4,0.8], [32,64,128], [[64,64,128], [128,128,256], [128,128,256]], is_training, bn_decay, scope='layer2')
    l3_xyz, l3_points, _ = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.4, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, 40, activation_fn=None, scope='fc3')

    return net, end_points 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:25,代碼來源:pointnet2_cls_msg.py

示例5: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(point_cloud, is_training, bn_decay=None, num_class=NUM_CLASSES):
    """ Classification PointNet, input is BxNx3, output Bx40 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = None
    end_points['l0_xyz'] = l0_xyz

    # Set abstraction layers
    # Note: When using NCHW for layer 2, we see increased GPU memory usage (in TF1.4).
    # So we only use NCHW for layer 1 until this issue can be resolved.
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1', use_nchw=True)
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 256, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp2')
    net = tf_util.fully_connected(net, num_class, activation_fn=None, scope='fc3')

    return net, end_points 
開發者ID:hkust-vgd,項目名稱:scanobjectnn,代碼行數:27,代碼來源:pointnet2_cls_ssg.py

示例6: build_mlp_pred_block

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def build_mlp_pred_block(self, fusion, num_classes):
    self.mlp_builder.bn_decay = None
    out = self.mlp_builder.build(fusion,
                                 512,
                                 scope='seg/conv1',
                                 is_training=self.is_training)
    out = self.mlp_builder.build(out,
                                 256,
                                 scope='seg/conv2',
                                 is_training=self.is_training)
    out = tf_util.dropout(out,
                          keep_prob=0.7,
                          scope='dp1',
                          is_training=self.is_training)
    self.mlp_builder.bn = False
    out = self.mlp_builder.build(out,
                                 num_classes,
                                 scope='seg/conv3',
                                 activation_fn=None)
    pred = tf.squeeze(out, [2])

    return pred 
開發者ID:lightaime,項目名稱:deep_gcns,代碼行數:24,代碼來源:model.py

示例7: weight_net

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def weight_net(xyz, hidden_units, scope, is_training, bn_decay=None, weight_decay=None,
               activation_fn=tf.nn.relu, is_dist=False):
    with tf.variable_scope(scope) as sc:
        net = xyz
        for i, num_hidden_units in enumerate(hidden_units):
            if i != len(hidden_units) - 1:
                net = tf_util.conv2d(net, num_hidden_units, [1, 1],
                                     padding='VALID', stride=[1, 1],
                                     bn=True, is_training=is_training, activation_fn=activation_fn,
                                     scope='wconv{}'.format(i), bn_decay=bn_decay,
                                     weight_decay=weight_decay, is_dist=is_dist)
            else:
                net = tf_util.conv2d(net, num_hidden_units, [1, 1],
                                     padding='VALID', stride=[1, 1],
                                     bn=False, is_training=is_training, activation_fn=None,
                                     scope='wconv{}'.format(i), bn_decay=bn_decay,
                                     weight_decay=weight_decay, is_dist=is_dist)
            # net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='wconv_dp{}'.format(i))
    return net 
開發者ID:dlinzhao,項目名稱:JSNet,代碼行數:21,代碼來源:pointconv_util.py

示例8: nonlinear_transform

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def nonlinear_transform(data_in, mlp, scope, is_training, bn_decay=None, weight_decay=None,
                        activation_fn=tf.nn.relu, is_dist=False):
    with tf.variable_scope(scope) as sc:

        net = data_in
        l = len(mlp)
        if l > 1:
            for i, out_ch in enumerate(mlp[0:(l - 1)]):
                net = tf_util.conv2d(net, out_ch, [1, 1],
                                     padding='VALID', stride=[1, 1],
                                     bn=True, is_training=is_training, activation_fn=tf.nn.relu,
                                     scope='nonlinear{}'.format(i), bn_decay=bn_decay,
                                     weight_decay=weight_decay, is_dist=is_dist)

                # net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp_nonlinear{}'.format(i))
        net = tf_util.conv2d(net, mlp[-1], [1, 1],
                             padding='VALID', stride=[1, 1],
                             bn=False, is_training=is_training,
                             scope='nonlinear%d' % (l - 1), bn_decay=bn_decay,
                             activation_fn=tf.nn.sigmoid, weight_decay=weight_decay, is_dist=is_dist)

    return net 
開發者ID:dlinzhao,項目名稱:JSNet,代碼行數:24,代碼來源:pointconv_util.py

示例9: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(net, is_training, add_lstm=False, bn_decay=None, separately=False):
    """ Densenet169 regression model, input is BxWxHx3, output Bx2"""
    net = get_densenet(224, 224)(net)

    if not add_lstm:
        net = tf_util.fully_connected(net, 2, activation_fn=None, scope='fc_final')

    else:
        net = tf_util.fully_connected(net, 784, bn=True,
                                      is_training=is_training,
                                      scope='fc_lstm',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.7,
                              is_training=is_training,
                              scope="dp1")
        net = cnn_lstm_block(net)

    return net 
開發者ID:driving-behavior,項目名稱:DBNet,代碼行數:20,代碼來源:densenet169_io.py

示例10: dense_block

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def dense_block(x, stage, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1e-4, grow_nb_filters=True):
    ''' Build a dense_block where the output of each conv_block is fed to subsequent ones
        # Arguments
            x: input tensor
            stage: index for dense block
            nb_layers: the number of layers of conv_block to append to the model.
            nb_filter: number of filters
            growth_rate: growth rate
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            grow_nb_filters: flag to decide to allow number of filters to grow
    '''

    eps = 1.1e-5
    concat_feat = x

    for i in range(nb_layers):
        branch = i+1
        x = conv_block(concat_feat, stage, branch, growth_rate, dropout_rate, weight_decay)
        concat_feat = concatenate([concat_feat, x], axis=3, name='concat_'+str(stage)+'_'+str(branch))

        if grow_nb_filters:
            nb_filter += growth_rate

    return concat_feat, nb_filter 
開發者ID:driving-behavior,項目名稱:DBNet,代碼行數:27,代碼來源:densenet169_io.py

示例11: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(net, is_training, add_lstm=False, bn_decay=None, separately=False):
    """ Inception_V4 regression model, input is BxWxHx3, output Bx2"""
    net = get_inception(299, 299)(net)

    if not add_lstm:
        net = tf_util.fully_connected(net, 2, activation_fn=None, scope='fc_final')

    else:
        net = tf_util.fully_connected(net, 784, bn=True,
                                      is_training=is_training,
                                      scope='fc_lstm',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.7,
                              is_training=is_training,
                              scope="dp1")
        net = cnn_lstm_block(net)

    return net 
開發者ID:driving-behavior,項目名稱:DBNet,代碼行數:20,代碼來源:inception_v4_io.py

示例12: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(net, is_training, add_lstm=False, bn_decay=None, separately=False):
    """ ResNet152 regression model, input is BxWxHx3, output Bx2"""
    net = get_resnet(224, 224)(net)

    if not add_lstm:
        net = tf_util.fully_connected(net, 2, activation_fn=None, scope='fc_final')

    else:
        net = tf_util.fully_connected(net, 784, bn=True,
                                      is_training=is_training,
                                      scope='fc_lstm',
                                      bn_decay=bn_decay)
        net = tf_util.dropout(net, keep_prob=0.7,
                              is_training=is_training,
                              scope="dp1")
        net = cnn_lstm_block(net)

    return net 
開發者ID:driving-behavior,項目名稱:DBNet,代碼行數:20,代碼來源:resnet152_io.py

示例13: get_pose

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_pose(source_global_feature, template_global_feature, is_training, bn_decay=None):
	net = tf.concat([source_global_feature,template_global_feature],1)
	net = tf_util.fully_connected(net, 1024, bn=False, is_training=is_training,scope='fc1', bn_decay=bn_decay)
	net = tf_util.fully_connected(net, 512, bn=False, is_training=is_training,scope='fc2', bn_decay=bn_decay)
	net = tf_util.fully_connected(net, 256, bn=False, is_training=is_training,scope='fc3', bn_decay=bn_decay)
	net = tf_util.dropout(net, keep_prob=0.7, is_training=is_training,scope='dp4')
	predicted_transformation = tf_util.fully_connected(net, 7, activation_fn=None, scope='fc4')
	return predicted_transformation 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:10,代碼來源:ipcr_model.py

示例14: get_model

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_model(point_cloud, num_frames, is_training, bn_decay=None):
    """ Input:
            point_cloud: [batch_size, num_point * num_frames, 3]
        Output:
            net: [batch_size, num_class] """
    end_points = {}
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value // num_frames

    l0_xyz = point_cloud
    l0_time = tf.concat([tf.ones([batch_size, num_point, 1]) * i for i in range(num_frames)], \
            axis=-2)
    l0_points = tf.concat([point_cloud[:, :, 3:], l0_time], axis=-1)

    RADIUS1 = np.linspace(0.5, 0.6, num_frames, dtype='float32')
    RADIUS2 = RADIUS1 * 2
    RADIUS3 = RADIUS1 * 4
    RADIUS4 = RADIUS1 * 8

    l1_xyz, l1_time, l1_points, l1_indices = meteor_direct_module(l0_xyz, l0_time, l0_points, npoint=1024, radius=RADIUS1, nsample=32, mlp=[32,32,64], mlp2=None, group_all=False, knn=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_time, l2_points, l2_indices = meteor_direct_module(l1_xyz, l1_time, l1_points, npoint=512, radius=RADIUS2, nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, knn=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_time, l3_points, l3_indices = meteor_direct_module(l2_xyz, l2_time, l2_points, npoint=128, radius=RADIUS3, nsample=32, mlp=[128,128,256], mlp2=None, group_all=False, knn=False, is_training=is_training, bn_decay=bn_decay, scope='layer3')
    l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer4')

    # Fully connected layers
    net = tf.reshape(l3_points, [batch_size, -1])
    net = tf_util.fully_connected(net, 512, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.fully_connected(net, 20, activation_fn=None, scope='fc3')

    return net, end_points 
開發者ID:xingyul,項目名稱:meteornet,代碼行數:33,代碼來源:model_cls_direct.py

示例15: get_mlp

# 需要導入模塊: import tf_util [as 別名]
# 或者: from tf_util import dropout [as 別名]
def get_mlp(net, layer_sizes, scope_name, is_training, bn_decay, dropout=None):
    assert len(layer_sizes) > 0
    with tf.variable_scope(scope_name):
        for idx, layer_size in enumerate(layer_sizes[:-1]):
            net = tf_util.fully_connected(net, layer_size, bn=True, is_training=is_training, scope=f'fc{idx+1}', bn_decay=bn_decay)
        if dropout is not None:
            net = tf_util.dropout(net, keep_prob=dropout, is_training=is_training, scope='dp1')
        return tf_util.fully_connected(net, layer_sizes[-1], activation_fn=None, scope=f'fc{len(layer_sizes)}') 
開發者ID:grossjohannes,項目名稱:AlignNet-3D,代碼行數:10,代碼來源:tp8.py


注:本文中的tf_util.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。