本文整理匯總了Python中text.text_to_sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python text.text_to_sequence方法的具體用法?Python text.text_to_sequence怎麽用?Python text.text_to_sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類text
的用法示例。
在下文中一共展示了text.text_to_sequence方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def generate(model, text):
# Text to index sequence
cleaner_names = [x.strip() for x in hp.cleaners.split(',')]
seq = np.expand_dims(np.asarray(text_to_sequence(text, cleaner_names), dtype=np.int32), axis=0)
# Provide [GO] Frame
mel_input = np.zeros([seq.shape[0], hp.num_mels, 1], dtype=np.float32)
# Variables
characters = Variable(torch.from_numpy(seq).type(torch.cuda.LongTensor), volatile=True).cuda()
mel_input = Variable(torch.from_numpy(mel_input).type(torch.cuda.FloatTensor), volatile=True).cuda()
# Spectrogram to wav
_, linear_output = model.forward(characters, mel_input)
wav = inv_spectrogram(linear_output[0].data.cpu().numpy())
wav = wav[:find_endpoint(wav)]
out = io.BytesIO()
save_wav(wav, out)
return out.getvalue()
示例2: _get_next_example
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def _get_next_example(self):
'''Loads a single example (input, mel_target, linear_target, cost) from disk'''
if self._offset >= len(self._metadata):
self._offset = 0
random.shuffle(self._metadata)
meta = self._metadata[self._offset]
self._offset += 1
text = meta[3]
if self._cmudict and random.random() < _p_cmudict:
text = ' '.join([self._maybe_get_arpabet(word) for word in text.split(' ')])
input_data = np.asarray(text_to_sequence(text, self._cleaner_names), dtype=np.int32)
linear_target = np.load(os.path.join(self._datadir, meta[0]))
mel_target = np.load(os.path.join(self._datadir, meta[1]))
return (input_data, mel_target, linear_target, len(linear_target))
示例3: _get_next_example
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def _get_next_example(self):
'''Loads a single example (input, mel_target, linear_target, cost) from disk'''
if self._offset >= len(self._metadata):
self._offset = 0
random.shuffle(self._metadata)
meta = self._metadata[self._offset]
self._offset += 1
text = meta[3]
if self._cmudict and random.random() < _p_cmudict:
text = ' '.join([self._maybe_get_arpabet(word) for word in text.split(' ')])
input_data = np.asarray(text_to_sequence(text, self._cleaner_names), dtype=np.int32)
linear_target = np.load(os.path.join(self._datadir, meta[0]))
mel_target = np.load(os.path.join(self._datadir, meta[1]))
return (input_data, mel_target, linear_target, len(linear_target))
示例4: _get_next_example
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def _get_next_example(self):
'''Loads a single example (input, mel_target, linear_target, cost) from disk'''
if self._offset >= len(self._metadata):
self._offset = 0
random.shuffle(self._metadata)
meta = self._metadata[self._offset]
self._offset += 1
text = meta[3]
arr = []
for word in text.split(' '):
if word in [" ", ""]:
pass
elif word in [",", '.', '-']:
x = word
arr.append(x)
else:
x = self._maybe_get_arpabet(word)
arr.append(x)
text = ' '.join(arr)
input_data = np.asarray(text_to_sequence(text, self._cleaner_names), dtype=np.int32)
linear_target = np.load(os.path.join(self._datadir, meta[0]))
mel_target = np.load(os.path.join(self._datadir, meta[1]))
return (input_data, mel_target, linear_target, len(linear_target))
示例5: load_data
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def load_data(txt, mel, model):
character = text.text_to_sequence(txt, hparams.text_cleaners)
character = torch.from_numpy(np.stack([np.array(character)])).long().cuda()
text_length = torch.Tensor([character.size(1)]).long().cuda()
mel = torch.from_numpy(np.stack([mel.T])).float().cuda()
max_len = mel.size(2)
output_length = torch.Tensor([max_len]).long().cuda()
inputs = character, text_length, mel, max_len, output_length
with torch.no_grad():
[_, mel_tacotron2, _, alignment], cemb = model.forward(inputs)
alignment = alignment[0].cpu().numpy()
cemb = cemb[0].cpu().numpy()
D = get_D(alignment)
D = np.array(D)
mel_tacotron2 = mel_tacotron2[0].cpu().numpy()
return mel_tacotron2, cemb, D
示例6: load_data_from_tacotron2
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def load_data_from_tacotron2(txt, model):
character = text.text_to_sequence(txt, hparams.text_cleaners)
character = torch.from_numpy(np.stack([np.array(character)])).long().cuda()
with torch.no_grad():
[_, mel, _, alignment], cemb = model.inference(character)
alignment = alignment[0].cpu().numpy()
cemb = cemb[0].cpu().numpy()
D = get_D(alignment)
D = np.array(D)
mel = mel[0].cpu().numpy()
return mel, cemb, D
示例7: synthesis
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def synthesis(model, text, alpha=1.0):
text = np.array(text_to_sequence(text, hp.text_cleaners))
text = np.stack([text])
with torch.no_grad():
sequence = torch.autograd.Variable(
torch.from_numpy(text)).cuda().long()
# mel, mel_postnet_1, mel_postnet_2 = model.module.inference(
# sequence, alpha)
mel = model.module.inference(sequence, alpha)
# out = mel[0].cpu().transpose(0, 1),\
# mel_postnet_1[0].cpu().transpose(0, 1),\
# mel_postnet_2[0].cpu().transpose(0, 1),\
# mel.transpose(1, 2),\
# mel_postnet_1.transpose(1, 2),\
# mel_postnet_2.transpose(1, 2)
return mel[0].cpu().transpose(0, 1), mel.transpose(1, 2)
示例8: __getitem__
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def __getitem__(self, idx):
# mel_gt_name = os.path.join(
# hparams.mel_ground_truth, "ljspeech-mel-%05d.npy" % (idx+1))
# mel_gt_target = np.load(mel_gt_name)
mel_tac2_target = np.load(os.path.join(
hparams.mel_tacotron2, str(idx)+".npy")).T
cemb = np.load(os.path.join(hparams.cemb_path, str(idx)+".npy"))
D = np.load(os.path.join(hparams.alignment_path, str(idx)+".npy"))
character = self.text[idx][0:len(self.text[idx])-1]
character = np.array(text_to_sequence(
character, hparams.text_cleaners))
sample = {"text": character,
"mel_tac2_target": mel_tac2_target,
"cemb": cemb,
"D": D}
return sample
示例9: synthesis
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def synthesis(model, text, alpha=1.0):
text = np.array(text_to_sequence(text, hp.text_cleaners))
text = np.stack([text])
src_pos = np.array([i+1 for i in range(text.shape[1])])
src_pos = np.stack([src_pos])
with torch.no_grad():
sequence = torch.autograd.Variable(
torch.from_numpy(text)).cuda().long()
src_pos = torch.autograd.Variable(
torch.from_numpy(src_pos)).cuda().long()
mel, mel_postnet = model.module.forward(sequence, src_pos, alpha=alpha)
return mel[0].cpu().transpose(0, 1), \
mel_postnet[0].cpu().transpose(0, 1), \
mel.transpose(1, 2), \
mel_postnet.transpose(1, 2)
示例10: infer
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def infer(wav_path, text, model):
sequence = text_to_sequence(text, hps.text_cleaners)
sequence = to_var(torch.IntTensor(sequence)[None, :]).long()
mel = melspectrogram(load_wav(wav_path))
mel_in = to_var(torch.Tensor([mel]))
r = mel_in.shape[2]%hps.n_frames_per_step
if r != 0:
mel_in = mel_in[:, :, :-r]
sequence = torch.cat([sequence, sequence], 0)
mel_in = torch.cat([mel_in, mel_in], 0)
_, mel_outputs_postnet, _, _ = model.teacher_infer(sequence, mel_in)
ret = mel
if r != 0:
ret[:, :-r] = to_arr(mel_outputs_postnet[0])
else:
ret = to_arr(mel_outputs_postnet[0])
return ret
示例11: synthesize
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def synthesize(self, text, reference_mel):
cleaner_names = [x.strip() for x in hparams.cleaners.split(',')]
seq = text_to_sequence(text, cleaner_names)
feed_dict = {
self.model.inputs: [np.asarray(seq, dtype=np.int32)],
self.model.input_lengths: np.asarray([len(seq)], dtype=np.int32),
self.model.reference_mel: [np.asarray(reference_mel, dtype=np.float32)]
}
wav = self.session.run(self.wav_output, feed_dict=feed_dict)
wav = audio.inv_preemphasis(wav)
wav = wav[:audio.find_endpoint(wav)]
out = io.BytesIO()
audio.save_wav(wav, out)
return out.getvalue()
示例12: test_text_to_sequence
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def test_text_to_sequence():
assert text_to_sequence('', []) == [1]
assert text_to_sequence('Hi!', []) == [9, 36, 54, 1]
assert text_to_sequence('"A"_B', []) == [2, 3, 1]
assert text_to_sequence('A {AW1 S} B', []) == [2, 64, 83, 132, 64, 3, 1]
assert text_to_sequence('Hi', ['lowercase']) == [35, 36, 1]
assert text_to_sequence('A {AW1 S} B', ['english_cleaners']) == [28, 64, 83, 132, 64, 29, 1]
示例13: synthesis
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def synthesis(text, args):
m = Model()
m_post = ModelPostNet()
m.load_state_dict(load_checkpoint(args.restore_step1, "transformer"))
m_post.load_state_dict(load_checkpoint(args.restore_step2, "postnet"))
text = np.asarray(text_to_sequence(text, [hp.cleaners]))
text = t.LongTensor(text).unsqueeze(0)
text = text.cuda()
mel_input = t.zeros([1,1, 80]).cuda()
pos_text = t.arange(1, text.size(1)+1).unsqueeze(0)
pos_text = pos_text.cuda()
m=m.cuda()
m_post = m_post.cuda()
m.train(False)
m_post.train(False)
pbar = tqdm(range(args.max_len))
with t.no_grad():
for i in pbar:
pos_mel = t.arange(1,mel_input.size(1)+1).unsqueeze(0).cuda()
mel_pred, postnet_pred, attn, stop_token, _, attn_dec = m.forward(text, mel_input, pos_text, pos_mel)
mel_input = t.cat([mel_input, postnet_pred[:,-1:,:]], dim=1)
mag_pred = m_post.forward(postnet_pred)
wav = spectrogram2wav(mag_pred.squeeze(0).cpu().numpy())
write(hp.sample_path + "/test.wav", hp.sr, wav)
示例14: __getitem__
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir, self.landmarks_frame.ix[idx, 0]) + '.wav'
text = self.landmarks_frame.ix[idx, 1]
text = np.asarray(text_to_sequence(text, [hp.cleaners]), dtype=np.int32)
mel = np.load(wav_name[:-4] + '.pt.npy')
mel_input = np.concatenate([np.zeros([1,hp.num_mels], np.float32), mel[:-1,:]], axis=0)
text_length = len(text)
pos_text = np.arange(1, text_length + 1)
pos_mel = np.arange(1, mel.shape[0] + 1)
sample = {'text': text, 'mel': mel, 'text_length':text_length, 'mel_input':mel_input, 'pos_mel':pos_mel, 'pos_text':pos_text}
return sample
示例15: synthesize
# 需要導入模塊: import text [as 別名]
# 或者: from text import text_to_sequence [as 別名]
def synthesize(self, text):
text = arpa.to_arpa(text)
cleaner_names = [x.strip() for x in hparams.cleaners.split(',')]
seq = text_to_sequence(text, cleaner_names)
feed_dict = {
self.model.inputs: [np.asarray(seq, dtype=np.int32)],
self.model.input_lengths: np.asarray([len(seq)], dtype=np.int32)
}
wav = self.session.run(self.wav_output, feed_dict=feed_dict)
wav = audio.inv_preemphasis(wav)
wav = wav[:audio.find_endpoint(wav)]
out = io.BytesIO()
audio.save_wav(wav, out)
return out.getvalue()