本文整理匯總了Python中text.symbols.symbols方法的典型用法代碼示例。如果您正苦於以下問題:Python symbols.symbols方法的具體用法?Python symbols.symbols怎麽用?Python symbols.symbols使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類text.symbols
的用法示例。
在下文中一共展示了symbols.symbols方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def __init__(self,
n_src_vocab=len(symbols)+1,
len_max_seq=hp.max_sep_len,
d_word_vec=hp.word_vec_dim,
n_layers=hp.encoder_n_layer,
n_head=hp.encoder_head,
d_k=64,
d_v=64,
d_model=hp.word_vec_dim,
d_inner=hp.encoder_conv1d_filter_size,
dropout=hp.dropout):
super(Encoder, self).__init__()
n_position = len_max_seq + 1
self.src_word_emb = nn.Embedding(
n_src_vocab, d_word_vec, padding_idx=Constants.PAD)
self.position_enc = nn.Embedding.from_pretrained(
get_sinusoid_encoding_table(n_position, d_word_vec, padding_idx=0),
freeze=True)
self.layer_stack = nn.ModuleList([FFTBlock(
d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)])
示例2: __init__
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def __init__(self, embedding_size):
"""
:param embedding_size: dimension of embedding
"""
super(Encoder, self).__init__()
self.embedding_size = embedding_size
self.embed = nn.Embedding(len(symbols), embedding_size)
self.prenet = Prenet(embedding_size, hp.hidden_size * 2, hp.hidden_size)
self.cbhg = CBHG(hp.hidden_size)
示例3: text_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def text_to_sequence(text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
# Append EOS token
sequence.append(_symbol_to_id['~'])
return sequence
示例4: _symbols_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def _symbols_to_sequence(symbols):
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
示例5: __init__
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def __init__(self, embedding_size, num_hidden):
super(EncoderPrenet, self).__init__()
self.embedding_size = embedding_size
self.embed = nn.Embedding(len(symbols), embedding_size, padding_idx=0)
self.conv1 = Conv(in_channels=embedding_size,
out_channels=num_hidden,
kernel_size=5,
padding=int(np.floor(5 / 2)),
w_init='relu')
self.conv2 = Conv(in_channels=num_hidden,
out_channels=num_hidden,
kernel_size=5,
padding=int(np.floor(5 / 2)),
w_init='relu')
self.conv3 = Conv(in_channels=num_hidden,
out_channels=num_hidden,
kernel_size=5,
padding=int(np.floor(5 / 2)),
w_init='relu')
self.batch_norm1 = nn.BatchNorm1d(num_hidden)
self.batch_norm2 = nn.BatchNorm1d(num_hidden)
self.batch_norm3 = nn.BatchNorm1d(num_hidden)
self.dropout1 = nn.Dropout(p=0.2)
self.dropout2 = nn.Dropout(p=0.2)
self.dropout3 = nn.Dropout(p=0.2)
self.projection = Linear(num_hidden, num_hidden)
示例6: convert_to_en_symbols
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def convert_to_en_symbols():
'''Converts built-in korean symbols to english, to be used for english training
'''
global _symbol_to_id, _id_to_symbol, isEn
if not isEn:
print(" [!] Converting to english mode")
_symbol_to_id = {s: i for i, s in enumerate(en_symbols)}
_id_to_symbol = {i: s for i, s in enumerate(en_symbols)}
isEn=True
示例7: _text_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def _text_to_sequence(text, cleaner_names, as_token):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
# Append EOS token
sequence.append(_symbol_to_id[EOS]) # [14, 29, 45, 2, 27, 62, 20, 21, 4, 39, 45, 1]
if as_token:
return sequence_to_text(sequence, combine_jamo=True)
else:
return np.array(sequence, dtype=np.int32)
示例8: _symbols_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def _symbols_to_sequence(symbols):
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
示例9: text_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def text_to_sequence(text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(
_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
return sequence
示例10: text_to_sequence
# 需要導入模塊: from text import symbols [as 別名]
# 或者: from text.symbols import symbols [as 別名]
def text_to_sequence(text, cleaner_names):
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
The text can optionally have ARPAbet sequences enclosed in curly braces embedded
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
Args:
text: string to convert to a sequence
cleaner_names: names of the cleaner functions to run the text through
Returns:
List of integers corresponding to the symbols in the text
'''
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
break
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
sequence += _arpabet_to_sequence(m.group(2))
text = m.group(3)
return sequence