當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.dummy_dataloader方法代碼示例

本文整理匯總了Python中tests.utils.dummy_dataloader方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.dummy_dataloader方法的具體用法?Python utils.dummy_dataloader怎麽用?Python utils.dummy_dataloader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tests.utils的用法示例。


在下文中一共展示了utils.dummy_dataloader方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_padding

# 需要導入模塊: from tests import utils [as 別名]
# 或者: from tests.utils import dummy_dataloader [as 別名]
def test_padding(self):
        self.args.label_smoothing = 0.1
        crit = LabelSmoothedCrossEntropyCriterion(self.args, self.task)
        loss, _, logging_output = crit(self.model, self.sample)

        def get_one_no_padding(idx):
            # create a new sample with just a single batch item so that there's
            # no padding
            sample1 = next(test_utils.dummy_dataloader([self.data[idx]]))
            args1 = copy.copy(self.args)
            args1.probs = args1.probs[idx, :, :].unsqueeze(0)
            model1 = self.task.build_model(args1)
            loss1, _, _ = crit(model1, sample1)
            return loss1

        loss1 = get_one_no_padding(0)
        loss2 = get_one_no_padding(1)
        self.assertAlmostEqual(loss, loss1 + loss2) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:20,代碼來源:test_label_smoothing.py

示例2: test_padding

# 需要導入模塊: from tests import utils [as 別名]
# 或者: from tests.utils import dummy_dataloader [as 別名]
def test_padding(self):
        self.args.label_smoothing = 0.1
        crit = LabelSmoothedCrossEntropyCriterion.build_criterion(self.args, self.task)
        loss, _, logging_output = crit(self.model, self.sample)

        def get_one_no_padding(idx):
            # create a new sample with just a single batch item so that there's
            # no padding
            sample1 = next(test_utils.dummy_dataloader([self.data[idx]]))
            args1 = copy.copy(self.args)
            args1.probs = args1.probs[idx, :, :].unsqueeze(0)
            model1 = self.task.build_model(args1)
            loss1, _, _ = crit(model1, sample1)
            return loss1

        loss1 = get_one_no_padding(0)
        loss2 = get_one_no_padding(1)
        self.assertAlmostEqual(loss, loss1 + loss2) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:20,代碼來源:test_label_smoothing.py

示例3: setUp

# 需要導入模塊: from tests import utils [as 別名]
# 或者: from tests.utils import dummy_dataloader [as 別名]
def setUp(self):
        # build dictionary
        self.d = test_utils.dummy_dictionary(3)
        vocab = len(self.d)
        self.assertEqual(vocab, 4 + 3)  # 4 special + 3 tokens
        self.assertEqual(self.d.pad(), 1)
        self.assertEqual(self.d.eos(), 2)
        self.assertEqual(self.d.unk(), 3)
        pad, eos, unk, w1, w2, w3 = 1, 2, 3, 4, 5, 6  # noqa: F841

        # build dataset
        self.data = [
            # the first batch item has padding
            {'source': torch.LongTensor([w1, eos]), 'target': torch.LongTensor([w1, eos])},
            {'source': torch.LongTensor([w1, eos]), 'target': torch.LongTensor([w1, w1, eos])},
        ]
        self.sample = next(test_utils.dummy_dataloader(self.data))

        # build model
        self.args = argparse.Namespace()
        self.args.sentence_avg = False
        self.args.probs = torch.FloatTensor([
            #      pad   eos  unk   w1   w2   w3
            [0.05, 0.05, 0.1, 0.05, 0.3, 0.4, 0.05],
            [0.05, 0.10, 0.2, 0.05, 0.2, 0.3, 0.10],
            [0.05, 0.15, 0.3, 0.05, 0.1, 0.2, 0.15],
        ]).unsqueeze(0).expand(2, 3, 7)  # add batch dimension
        self.task = test_utils.TestTranslationTask.setup_task(self.args, self.d, self.d)
        self.model = self.task.build_model(self.args) 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:31,代碼來源:test_label_smoothing.py


注:本文中的tests.utils.dummy_dataloader方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。