本文整理匯總了Python中tensorrt.init_libnvinfer_plugins方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorrt.init_libnvinfer_plugins方法的具體用法?Python tensorrt.init_libnvinfer_plugins怎麽用?Python tensorrt.init_libnvinfer_plugins使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorrt
的用法示例。
在下文中一共展示了tensorrt.init_libnvinfer_plugins方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _load_plugins
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import init_libnvinfer_plugins [as 別名]
def _load_plugins(self):
ctypes.CDLL("models/ssd_mobilenet/libflattenconcat.so")
trt.init_libnvinfer_plugins(self.trt_logger, '')
示例2: _load_plugins
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import init_libnvinfer_plugins [as 別名]
def _load_plugins(self):
if trt.__version__[0] < '7':
ctypes.CDLL("ssd/libflattenconcat.so")
trt.init_libnvinfer_plugins(self.trt_logger, '')
示例3: main
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import init_libnvinfer_plugins [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument('model', type=str, choices=list(MODEL_SPECS.keys()))
args = parser.parse_args()
# initialize
if trt.__version__[0] < '7':
ctypes.CDLL(LIB_FILE)
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
trt.init_libnvinfer_plugins(TRT_LOGGER, '')
# compile the model into TensorRT engine
model = args.model
spec = MODEL_SPECS[model]
dynamic_graph = add_plugin(
gs.DynamicGraph(spec['input_pb']),
model,
spec)
_ = uff.from_tensorflow(
dynamic_graph.as_graph_def(),
output_nodes=['NMS'],
output_filename=spec['tmp_uff'],
text=True,
debug_mode=DEBUG_UFF)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
builder.max_workspace_size = 1 << 28
builder.max_batch_size = 1
builder.fp16_mode = True
parser.register_input('Input', INPUT_DIMS)
parser.register_output('MarkOutput_0')
parser.parse(spec['tmp_uff'], network)
engine = builder.build_cuda_engine(network)
buf = engine.serialize()
with open(spec['output_bin'], 'wb') as f:
f.write(buf)
示例4: __init__
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import init_libnvinfer_plugins [as 別名]
def __init__(self, trt_engine_path, uff_model_path, trt_engine_datatype=trt.DataType.FLOAT, batch_size=1):
"""Initializes TensorRT objects needed for model inference.
Args:
trt_engine_path (str): path where TensorRT engine should be stored
uff_model_path (str): path of .uff model
trt_engine_datatype (trt.DataType):
requested precision of TensorRT engine used for inference
batch_size (int): batch size for which engine
should be optimized for
"""
# We first load all custom plugins shipped with TensorRT,
# some of them will be needed during inference
trt.init_libnvinfer_plugins(TRT_LOGGER, '')
# Initialize runtime needed for loading TensorRT engine from file
self.trt_runtime = trt.Runtime(TRT_LOGGER)
# TRT engine placeholder
self.trt_engine = None
# Display requested engine settings to stdout
print("TensorRT inference engine settings:")
print(" * Inference precision - {}".format(trt_engine_datatype))
print(" * Max batch size - {}\n".format(batch_size))
# If engine is not cached, we need to build it
if not os.path.exists(trt_engine_path):
# This function uses supplied .uff file
# alongside with UffParser to build TensorRT
# engine. For more details, check implmentation
self.trt_engine = engine_utils.build_engine(
uff_model_path, TRT_LOGGER,
trt_engine_datatype=trt_engine_datatype,
batch_size=batch_size)
# Save the engine to file
engine_utils.save_engine(self.trt_engine, trt_engine_path)
# If we get here, the file with engine exists, so we can load it
if not self.trt_engine:
print("Loading cached TensorRT engine from {}".format(
trt_engine_path))
self.trt_engine = engine_utils.load_engine(
self.trt_runtime, trt_engine_path)
# This allocates memory for network inputs/outputs on both CPU and GPU
self.inputs, self.outputs, self.bindings, self.stream = \
engine_utils.allocate_buffers(self.trt_engine)
# Execution context is needed for inference
self.context = self.trt_engine.create_execution_context()
# Allocate memory for multiple usage [e.g. multiple batch inference]
input_volume = trt.volume(model_utils.ModelData.INPUT_SHAPE)
self.numpy_array = np.zeros((self.trt_engine.max_batch_size, input_volume))