本文整理匯總了Python中tensorrt.float32方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorrt.float32方法的具體用法?Python tensorrt.float32怎麽用?Python tensorrt.float32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorrt
的用法示例。
在下文中一共展示了tensorrt.float32方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
示例2: __init__
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def __init__(self,
max_batchsize,
workspace,
dtype=trt.float32,
builder_config_fn=None,
net_post_fn=None,
input_names=None,
verbose=False):
super().__init__()
self.max_batchsize = max_batchsize
self.workspace = workspace
self.logger = trt.Logger(trt.Logger.WARNING)
self.built = False
self.graph_pth = None
self.refit_weight_dict = {}
self.engine = None
self.ctx = None
self.output_shapes = None
self.output_names = None
self.need_refit = False
self.verbose = verbose
self.builder_config_fn = builder_config_fn
self.input_names = input_names
self.net_post_fn = net_post_fn
示例3: __call__
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def __call__(self, *args, **kw):
if not self.training and not self.built:
self.build_tensorrt(self.net, args)
self.built = True
self.need_refit = False
if not self.training:
if self.need_refit:
self.refit_engine(self.net)
self.need_refit = False
assert all([a.is_cuda for a in args])
torch.cuda.synchronize()
# args = [a.detach().cpu().numpy() for a in args]
output_dict = self.ctx.inference_async(*args)
# for k,v in output_dict.items():
# output_dict[k] = torch.tensor(v, dtype=torch.float32, device=torch.device("cuda:0"))
outputs = [None] * len(output_dict)
for k, v in output_dict.items():
outputs[self.output_names.index(k)] = v.view(
v.shape[0], *self.output_shapes[k])
if len(outputs) == 1:
return outputs[0]
return tuple(outputs)
else:
self.need_refit = True
return super().__call__(*args, **kw)
示例4: torch_dtype_from_trt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def torch_dtype_from_trt(dtype):
if dtype == trt.int8:
return torch.int8
elif dtype == trt.int32:
return torch.int32
elif dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
else:
raise TypeError('%s is not supported by torch' % dtype)
示例5: populate_network
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def populate_network(network, weights):
# Configure the network layers based on the weights provided.
input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)
# Set dummy weights for the kernel and bias weights in the conv1 layer. We
# will refit the engine with the actual weights later.
conv1_w = np.zeros((20,5,5), dtype=np.float32)
conv1_b = np.zeros(20, dtype=np.float32)
conv1 = network.add_convolution(input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b)
conv1.name = "conv_1"
conv1.stride = (1, 1)
pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
pool1.stride = (2, 2)
conv2_w = weights['conv2.weight'].numpy()
conv2_b = weights['conv2.bias'].numpy()
conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
conv2.stride = (1, 1)
pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
pool2.stride = (2, 2)
fc1_w = weights['fc1.weight'].numpy()
fc1_b = weights['fc1.bias'].numpy()
fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500, kernel=fc1_w, bias=fc1_b)
relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)
fc2_w = weights['fc2.weight'].numpy()
fc2_b = weights['fc2.bias'].numpy()
fc2 = network.add_fully_connected(relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)
fc2.get_output(0).name = ModelData.OUTPUT_NAME
network.mark_output(tensor=fc2.get_output(0))
示例6: torch_dtype_to_trt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def torch_dtype_to_trt(dtype):
if dtype == torch.int8:
return trt.int8
elif dtype == torch.int32:
return trt.int32
elif dtype == torch.float16:
return trt.float16
elif dtype == torch.float32:
return trt.float32
else:
raise TypeError('%s is not supported by tensorrt' % dtype)
示例7: convert_caffe_model_to_trt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def convert_caffe_model_to_trt(caffe_weights_file, caffe_deploy_file, trt_model_filename,
output_tensor_name, output_data_type, max_workspace_size, max_batch_size):
"Convert a pair of (caffe_weights_file,caffe_deploy_file) into a trt_model_file using the given parameters"
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.CaffeParser() as parser:
if (output_data_type=='fp16'):
if not builder.platform_has_fast_fp16:
print('Warning: This platform is not optimized for fast fp16 mode')
builder.fp16_mode = True
print('Converting into fp16, max_batch_size={}'.format(max_batch_size))
else:
print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))
builder.max_workspace_size = max_workspace_size
builder.max_batch_size = max_batch_size
model_tensors = parser.parse(deploy=caffe_deploy_file, model=caffe_weights_file, network=network, dtype=trt.float32)
network.mark_output(model_tensors.find(output_tensor_name))
trt_model_object = builder.build_cuda_engine(network)
try:
serialized_trt_model = trt_model_object.serialize()
with open(trt_model_filename, "wb") as trt_model_file:
trt_model_file.write(serialized_trt_model)
except:
print('Error: cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename))
示例8: torch_dtype_to_trt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def torch_dtype_to_trt(dtype):
if trt_version() >= '7.0' and dtype == torch.bool:
return trt.bool
elif dtype == torch.int8:
return trt.int8
elif dtype == torch.int32:
return trt.int32
elif dtype == torch.float16:
return trt.float16
elif dtype == torch.float32:
return trt.float32
else:
raise TypeError("%s is not supported by tensorrt" % dtype)
示例9: torch_dtype_from_trt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def torch_dtype_from_trt(dtype):
if dtype == trt.int8:
return torch.int8
elif trt_version() >= '7.0' and dtype == trt.bool:
return torch.bool
elif dtype == trt.int32:
return torch.int32
elif dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
else:
raise TypeError("%s is not supported by torch" % dtype)
示例10: build_tensorrt
# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import float32 [as 別名]
def build_tensorrt(self, net, torch_inputs):
if self.input_names is None:
input_names = get_torch_forward_name(net.forward)
else:
input_names = self.input_names
self.graph_pth = torch2trt.GraphModule(net, torch_inputs)
self.output_names = []
with trt.Builder(
self.logger) as builder, builder.create_network() as trt_net:
builder.max_workspace_size = self.workspace
builder.max_batch_size = self.max_batchsize
builder.fp16_mode = builder.platform_has_fast_fp16
# builder.refittable = False
if self.builder_config_fn is not None:
self.builder_config_fn(builder)
with torch2trt.trt_network(trt_net):
inputs = []
for i, arg in enumerate(torch_inputs):
name = input_names[i]
inp = trt_net.add_input(name=name,
shape=arg.shape[1:],
dtype=trt.float32)
inputs.append(inp)
outputs = self.graph_pth(*inputs, verbose=self.verbose)
self.refit_weight_dict = self.graph_pth.graph.refit_weight_dict
if not isinstance(outputs, (list, tuple)):
outputs = [outputs]
for i, out in enumerate(outputs):
name = "output{}".format(i)
out.name = name
self.output_names.append(name)
trt_net.mark_output(tensor=out)
self.builder = builder
if self.net_post_fn is not None:
self.net_post_fn(trt_net)
self.engine = builder.build_cuda_engine(trt_net)
self.ctx = self.engine.create_execution_context()
self.ctx = torch2trt.TorchInferenceContext(self.ctx)
# get output shapes
outputs = self.graph_pth(*torch_inputs)
if not isinstance(outputs, (list, tuple)):
outputs = [outputs]
self.output_shapes = {}
for n, v in zip(self.output_names, outputs):
self.output_shapes[n] = v.shape[1:]