當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorrt.OnnxParser方法代碼示例

本文整理匯總了Python中tensorrt.OnnxParser方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorrt.OnnxParser方法的具體用法?Python tensorrt.OnnxParser怎麽用?Python tensorrt.OnnxParser使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorrt的用法示例。


在下文中一共展示了tensorrt.OnnxParser方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(onnx, verbose=False):
    """Build TensorRT engine from the ONNX model."""
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 30  # 1GB
        builder.max_batch_size = MAX_BATCH
        builder.fp16_mode = FP16_MODE
        with open(onnx, 'rb') as model:
            if not parser.parse(model.read()):
                print('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print(parser.get_error(error))
                return None
        if trt.__version__[0] >= '7':
            # set input to batch size 1
            shape = list(network.get_input(0).shape)
            shape[0] = 1
            network.get_input(0).shape = shape
        return builder.build_cuda_engine(network) 
開發者ID:jkjung-avt,項目名稱:keras_imagenet,代碼行數:21,代碼來源:build_engine.py

示例2: build_engine_onnx

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine_onnx(model_file):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = common.GiB(1)
        # Load the Onnx model and parse it in order to populate the TensorRT network.
        with open(model_file, 'rb') as model:
            parser.parse(model.read())
        return builder.build_cuda_engine(network) 
開發者ID:aimuch,項目名稱:iAI,代碼行數:9,代碼來源:onnx_resnet50.py

示例3: get_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def get_engine(onnx_file_path, engine_file_path=""):
    """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
    def build_engine():
        """Takes an ONNX file and creates a TensorRT engine to run inference with"""
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = 1 << 30 # 1GB
            builder.max_batch_size = 1
            # Parse model file
            if not os.path.exists(onnx_file_path):
                print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
                exit(0)
            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')
            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")
            with open(engine_file_path, "wb") as f:
                f.write(engine.serialize())
            return engine

    if os.path.exists(engine_file_path):
        # If a serialized engine exists, use it instead of building an engine.
        print("Reading engine from file {}".format(engine_file_path))
        with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
            return runtime.deserialize_cuda_engine(f.read())
    else:
        return build_engine() 
開發者ID:aimuch,項目名稱:iAI,代碼行數:32,代碼來源:onnx_to_tensorrt.py

示例4: get_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def get_engine(onnx_file_path, engine_file_path=""):
    """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
    def build_engine():
        """Takes an ONNX file and creates a TensorRT engine to run inference with"""
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = 1 << 28 # 256MiB
            builder.max_batch_size = 1
            # Parse model file
            if not os.path.exists(onnx_file_path):
                print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
                exit(0)
            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')
            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")
            with open(engine_file_path, "wb") as f:
                f.write(engine.serialize())
            return engine

    if os.path.exists(engine_file_path):
        # If a serialized engine exists, use it instead of building an engine.
        print("Reading engine from file {}".format(engine_file_path))
        with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
            return runtime.deserialize_cuda_engine(f.read())
    else:
        return build_engine() 
開發者ID:aimuch,項目名稱:iAI,代碼行數:32,代碼來源:onnx_to_tensorrt.py

示例5: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(onnx_file_path, engine_file_path, precision, max_batch_size, cache_file=None):
    """Builds a new TensorRT engine and saves it, if no engine presents"""

    if os.path.exists(engine_file_path):
        logger.info('{} TensorRT engine already exists. Skip building engine...'.format(precision))
        return

    logger.info('Building {} TensorRT engine from onnx file...'.format(precision))
    with trt.Builder(TRT_LOGGER) as b, b.create_network() as n, trt.OnnxParser(n, TRT_LOGGER) as p:
        b.max_workspace_size = 1 << 30  # 1GB
        b.max_batch_size = max_batch_size
        if precision == 'fp16':
            b.fp16_mode = True
        elif precision == 'int8':
            from ..calibrator import Calibrator
            b.int8_mode = True
            b.int8_calibrator = Calibrator(cache_file=cache_file)
        elif precision == 'fp32':
            pass
        else:
            logger.error('Engine precision not supported: {}'.format(precision))
            raise NotImplementedError
        # Parse model file
        with open(onnx_file_path, 'rb') as model:
            p.parse(model.read())
        if p.num_errors:
            logger.error('Parsing onnx file found {} errors.'.format(p.num_errors))
        engine = b.build_cuda_engine(n)
        print(engine_file_path)
        with open(engine_file_path, "wb") as f:
            f.write(engine.serialize()) 
開發者ID:tensorboy,項目名稱:centerpose,代碼行數:33,代碼來源:demo_main.py

示例6: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(model_file):
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = MAX_WORKSPACE_SIZE
            builder.max_batch_size = MAX_BATCH_SIZE

            with open(model_file, 'rb') as model:
                parser.parse(model.read())
                return builder.build_cuda_engine(network) 
開發者ID:TAMU-VITA,項目名稱:FasterSeg,代碼行數:10,代碼來源:darts_utils.py

示例7: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(onnx_file_path, engine_file_path, verbose=False):
    """Takes an ONNX file and creates a TensorRT engine."""
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28
        builder.max_batch_size = 1
        builder.fp16_mode = True
        #builder.strict_type_constraints = True

        # Parse model file
        print('Loading ONNX file from path {}...'.format(onnx_file_path))
        with open(onnx_file_path, 'rb') as model:
            print('Beginning ONNX file parsing')
            if not parser.parse(model.read()):
                print('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print(parser.get_error(error))
                return None
        if trt.__version__[0] >= '7':
            # The actual yolov3.onnx is generated with batch size 64.
            # Reshape input to batch size 1
            shape = list(network.get_input(0).shape)
            shape[0] = 1
            network.get_input(0).shape = shape
        print('Completed parsing of ONNX file')

        print('Building an engine; this may take a while...')
        engine = builder.build_cuda_engine(network)
        print('Completed creating engine')
        with open(engine_file_path, 'wb') as f:
            f.write(engine.serialize())
        return engine 
開發者ID:jkjung-avt,項目名稱:tensorrt_demos,代碼行數:34,代碼來源:onnx_to_tensorrt.py

示例8: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(model_path):
    with trt.Builder(TRT_LOGGER) as builder, \
        builder.create_network() as network, \
        trt.OnnxParser(network, TRT_LOGGER) as parser: 
        builder.max_workspace_size = 1<<30
        builder.max_batch_size = 1
        with open(model_path, "rb") as f:
            parser.parse(f.read())
        engine = builder.build_cuda_engine(network)
        return engine 
開發者ID:ahmetgunduz,項目名稱:Real-time-GesRec,代碼行數:12,代碼來源:speed_gpu.py

示例9: get_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def get_engine(onnx_file_path, engine_file_path=""):
    """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
    def build_engine():
        """Takes an ONNX file and creates a TensorRT engine to run inference with"""
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = 1 << 30 # 1GB
            builder.max_batch_size = 1
            builder.fp16_mode = True
            # Parse model file
            if not os.path.exists(onnx_file_path):
                print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
                exit(0)
            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')
            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")
            with open(engine_file_path, "wb") as f:
                f.write(engine.serialize())
            return engine

    if os.path.exists(engine_file_path):
        # If a serialized engine exists, use it instead of building an engine.
        print("Reading engine from file {}".format(engine_file_path))
        with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
            return runtime.deserialize_cuda_engine(f.read())
    else:
        return build_engine() 
開發者ID:xuwanqi,項目名稱:yolov3-tensorrt,代碼行數:33,代碼來源:onnx_to_tensorrt.py

示例10: __call__

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def __call__(self):
        network = TensorRTRunnerV2.create_network(explicit_precision=self.explicit_precision)

        parser = trt.OnnxParser(network, TRT_LOGGER)
        success = parser.parse(self.onnx_loader().SerializeToString())
        if not success:
            for index in range(parser.num_errors):
                logging.error(parser.get_error(index))
            logging.critical("Could not parse ONNX correctly")

        return network, parser 
開發者ID:NVIDIA,項目名稱:NeMo,代碼行數:13,代碼來源:tensorrt_loaders.py

示例11: convert_onnx_model_to_trt

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def convert_onnx_model_to_trt(onnx_model_filename, trt_model_filename,
                              input_tensor_name, output_tensor_name,
                              output_data_type, max_workspace_size, max_batch_size):
    "Convert an onnx_model_filename into a trt_model_filename using the given parameters"

    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

    TRT_VERSION_MAJOR = int(trt.__version__.split('.')[0])

    with trt.Builder(TRT_LOGGER) as builder:
        if TRT_VERSION_MAJOR >= 7:
            flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
            network = builder.create_network(flag)
        else:
            network = builder.create_network()
        parser = trt.OnnxParser(network, TRT_LOGGER)

        if (output_data_type=='fp32'):
            print('Converting into fp32 (default), max_batch_size={}'.format(max_batch_size))
            builder.fp16_mode = False
        else:
            if not builder.platform_has_fast_fp16:
                print('Warning: This platform is not optimized for fast fp16 mode')

            builder.fp16_mode = True
            print('Converting into fp16, max_batch_size={}'.format(max_batch_size))

        builder.max_workspace_size  = max_workspace_size
        builder.max_batch_size      = max_batch_size

        with open(onnx_model_filename, 'rb') as onnx_model_file:
            onnx_model = onnx_model_file.read()

        if not parser.parse(onnx_model):
            raise RuntimeError("Onnx model parsing from {} failed. Error: {}".format(onnx_model_filename, parser.get_error(0).desc()))

        if TRT_VERSION_MAJOR >= 7:
            # Create an optimization profile (see Section 7.2 of https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf).
            profile = builder.create_optimization_profile()
            # FIXME: Hardcoded for ImageNet. The minimum/optimum/maximum dimensions of a dynamic input tensor are the same.
            profile.set_shape(input_tensor_name, (1, 3, 224, 224), (max_batch_size, 3, 224, 224), (max_batch_size, 3, 224, 224))

            config = builder.create_builder_config()
            config.add_optimization_profile(profile)

            trt_model_object = builder.build_engine(network, config)
        else:
            trt_model_object = builder.build_cuda_engine(network)

        try:
            serialized_trt_model = trt_model_object.serialize()
            with open(trt_model_filename, "wb") as trt_model_file:
                trt_model_file.write(serialized_trt_model)
        except:
            raise RuntimeError('Cannot serialize or write TensorRT engine to file {}.'.format(trt_model_filename)) 
開發者ID:ctuning,項目名稱:ck-tensorrt,代碼行數:57,代碼來源:onnx2tensorrt_model_converter.py

示例12: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import OnnxParser [as 別名]
def build_engine(
    onnx_path,
    seq_len=192,
    max_seq_len=256,
    batch_size=8,
    max_batch_size=64,
    trt_fp16=True,
    verbose=True,
    max_workspace_size=None,
    encoder=True,
):
    """Builds TRT engine from an ONNX file
    Note that network output 1 is unmarked so that the engine will not use
    vestigial length calculations associated with masked_fill
    """
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger(trt.Logger.WARNING)
    builder = trt.Builder(TRT_LOGGER)
    builder.max_batch_size = max_batch_size

    with open(onnx_path, 'rb') as model_fh:
        model = model_fh.read()

    model_onnx = onnx.load_model_from_string(model)
    input_feats = model_onnx.graph.input[0].type.tensor_type.shape.dim[1].dim_value
    input_name = model_onnx.graph.input[0].name

    if trt_fp16:
        builder.fp16_mode = True
        print("Optimizing for FP16")
        config_flags = 1 << int(trt.BuilderFlag.FP16)  # | 1 << int(trt.BuilderFlag.STRICT_TYPES)
    else:
        config_flags = 0
    builder.max_workspace_size = max_workspace_size if max_workspace_size else (4 * 1024 * 1024 * 1024)

    config = builder.create_builder_config()
    config.flags = config_flags

    profile = builder.create_optimization_profile()
    profile.set_shape(
        input_name,
        min=(1, input_feats, seq_len),
        opt=(batch_size, input_feats, seq_len),
        max=(max_batch_size, input_feats, max_seq_len),
    )
    config.add_optimization_profile(profile)

    explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    network = builder.create_network(explicit_batch)

    with trt.OnnxParser(network, TRT_LOGGER) as parser:
        parsed = parser.parse(model)
        print("Parsing returned ", parsed)
        return builder.build_engine(network, config=config) 
開發者ID:NVIDIA,項目名稱:NeMo,代碼行數:55,代碼來源:export_jasper_onnx_to_trt.py


注:本文中的tensorrt.OnnxParser方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。