當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorrt.Builder方法代碼示例

本文整理匯總了Python中tensorrt.Builder方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorrt.Builder方法的具體用法?Python tensorrt.Builder怎麽用?Python tensorrt.Builder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorrt的用法示例。


在下文中一共展示了tensorrt.Builder方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def main():
    "Parse command line and feed the conversion function"

    arg_parser  = argparse.ArgumentParser()
    arg_parser.add_argument('tf_model_filename',    type=str,                       help='TensorFlow model file')
    arg_parser.add_argument('trt_model_filename',   type=str,                       help='TensorRT model file')
    arg_parser.add_argument('--model_data_layout',  type=str,   default='NHWC',     help='Model data layout (NHWC or NCHW)')
    arg_parser.add_argument('--input_layer_name',   type=str,   default='input',    help='Input layer name')
    arg_parser.add_argument('--input_height',       type=int,   default=224,        help='Input height')
    arg_parser.add_argument('--input_width',        type=int,   default=224,        help='Input width')
    arg_parser.add_argument('--output_layer_name',  type=str,   default='MobilenetV1/Predictions/Reshape_1', help='Output layer name')
    arg_parser.add_argument('--output_data_type',   type=str,   default='fp32',     help='Model data type')
    arg_parser.add_argument('--max_workspace_size', type=int,   default=(1<<30),    help='Builder workspace size')
    arg_parser.add_argument('--max_batch_size',     type=int,   default=1,          help='Builder batch size')
    args        = arg_parser.parse_args()

    convert_tf_model_to_trt( args.tf_model_filename, args.trt_model_filename,
                                args.model_data_layout, args.input_layer_name, args.input_height, args.input_width,
                                args.output_layer_name, args.output_data_type, args.max_workspace_size, args.max_batch_size ) 
開發者ID:ctuning,項目名稱:ck-tensorrt,代碼行數:21,代碼來源:tf2tensorrt_model_converter.py

示例2: main

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def main():
    "Parse command line and feed the conversion function"

    arg_parser  = argparse.ArgumentParser()
    arg_parser.add_argument('onnx_model_file',      type=str,                             help='Onnx model file')
    arg_parser.add_argument('trt_model_filename',   type=str,                             help='TensorRT model file')
    arg_parser.add_argument('--input_tensor_name',  type=str,   default='input_tensor:0', help='Input tensor type')
    arg_parser.add_argument('--output_tensor_name', type=str,   default='prob',           help='Output tensor type')
    arg_parser.add_argument('--output_data_type',   type=str,   default='fp32',           help='Model data type')
    arg_parser.add_argument('--max_workspace_size', type=int,   default=(1<<30),          help='Builder workspace size')
    arg_parser.add_argument('--max_batch_size',     type=int,   default=1,                help='Builder batch size')
    args        = arg_parser.parse_args()

    convert_onnx_model_to_trt( args.onnx_model_file, args.trt_model_filename,
                               args.input_tensor_name, args.output_tensor_name,
                               args.output_data_type, args.max_workspace_size, args.max_batch_size ) 
開發者ID:ctuning,項目名稱:ck-tensorrt,代碼行數:18,代碼來源:onnx2tensorrt_model_converter.py

示例3: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(onnx, verbose=False):
    """Build TensorRT engine from the ONNX model."""
    TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) if verbose else trt.Logger()
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(*EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 30  # 1GB
        builder.max_batch_size = MAX_BATCH
        builder.fp16_mode = FP16_MODE
        with open(onnx, 'rb') as model:
            if not parser.parse(model.read()):
                print('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print(parser.get_error(error))
                return None
        if trt.__version__[0] >= '7':
            # set input to batch size 1
            shape = list(network.get_input(0).shape)
            shape[0] = 1
            network.get_input(0).shape = shape
        return builder.build_cuda_engine(network) 
開發者ID:jkjung-avt,項目名稱:keras_imagenet,代碼行數:21,代碼來源:build_engine.py

示例4: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(deploy_file, model_file):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.CaffeParser() as parser:
        builder.max_workspace_size = common.GiB(1)

        # Set the parser's plugin factory. Note that we bind the factory to a reference so
        # that we can destroy it later. (parser.plugin_factory_ext is a write-only attribute)
        parser.plugin_factory_ext = fc_factory

        # Parse the model and build the engine.
        model_tensors = parser.parse(deploy=deploy_file, model=model_file, network=network, dtype=ModelData.DTYPE)

        network.mark_output(model_tensors.find(ModelData.OUTPUT_NAME))
        return builder.build_cuda_engine(network)

# Loads a test case into the provided pagelocked_buffer. 
開發者ID:aimuch,項目名稱:iAI,代碼行數:17,代碼來源:sample.py

示例5: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(model_file):
    # For more information on TRT basics, refer to the introductory samples.
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
        builder.max_workspace_size = common.GiB(1)
        # Parse the Uff Network
        parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
        parser.register_output(ModelData.OUTPUT_NAME)
        parser.parse(model_file, network)
        # Build and return an engine.
        return builder.build_cuda_engine(network)

# Loads a test case into the provided pagelocked_buffer. 
開發者ID:aimuch,項目名稱:iAI,代碼行數:14,代碼來源:sample.py

示例6: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(uff_model_path, trt_logger, trt_engine_datatype=trt.DataType.FLOAT, batch_size=1, silent=False):
    with trt.Builder(trt_logger) as builder, builder.create_network() as network, trt.UffParser() as parser:
        builder.max_workspace_size = 1 << 30
        if trt_engine_datatype == trt.DataType.HALF:
            builder.fp16_mode = True
        builder.max_batch_size = batch_size

        parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
        parser.register_output("MarkOutput_0")
        parser.parse(uff_model_path, network)

        if not silent:
            print("Building TensorRT engine. This may take few minutes.")

        return builder.build_cuda_engine(network) 
開發者ID:aimuch,項目名稱:iAI,代碼行數:17,代碼來源:engine.py

示例7: build_engine_onnx

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine_onnx(model_file):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = common.GiB(1)
        # Load the Onnx model and parse it in order to populate the TensorRT network.
        with open(model_file, 'rb') as model:
            parser.parse(model.read())
        return builder.build_cuda_engine(network) 
開發者ID:aimuch,項目名稱:iAI,代碼行數:9,代碼來源:onnx_resnet50.py

示例8: build_engine_uff

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine_uff(model_file):
    # You can set the logger severity higher to suppress messages (or lower to display more messages).
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
        # Workspace size is the maximum amount of memory available to the builder while building an engine.
        # It should generally be set as high as possible.
        builder.max_workspace_size = common.GiB(1)
        # We need to manually register the input and output nodes for UFF.
        parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
        parser.register_output(ModelData.OUTPUT_NAME)
        # Load the UFF model and parse it in order to populate the TensorRT network.
        parser.parse(model_file, network)
        # Build and return an engine.
        return builder.build_cuda_engine(network) 
開發者ID:aimuch,項目名稱:iAI,代碼行數:15,代碼來源:uff_resnet50.py

示例9: get_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def get_engine(onnx_file_path, engine_file_path=""):
    """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
    def build_engine():
        """Takes an ONNX file and creates a TensorRT engine to run inference with"""
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = 1 << 30 # 1GB
            builder.max_batch_size = 1
            # Parse model file
            if not os.path.exists(onnx_file_path):
                print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
                exit(0)
            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')
            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")
            with open(engine_file_path, "wb") as f:
                f.write(engine.serialize())
            return engine

    if os.path.exists(engine_file_path):
        # If a serialized engine exists, use it instead of building an engine.
        print("Reading engine from file {}".format(engine_file_path))
        with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
            return runtime.deserialize_cuda_engine(f.read())
    else:
        return build_engine() 
開發者ID:aimuch,項目名稱:iAI,代碼行數:32,代碼來源:onnx_to_tensorrt.py

示例10: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(weights):
    # For more information on TRT basics, refer to the introductory samples.
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
        builder.max_workspace_size = common.GiB(1)
        # Populate the network using weights from the PyTorch model.
        populate_network(network, weights)
        # Build and return an engine.
        return builder.build_cuda_engine(network)

# Loads a random test case from pytorch's DataLoader 
開發者ID:aimuch,項目名稱:iAI,代碼行數:12,代碼來源:sample.py

示例11: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(model_path):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
        builder.max_workspace_size = common.GiB(1)

        uff_path = model_to_uff(model_path)
        parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
        parser.register_output(ModelData.OUTPUT_NAME)
        parser.parse(uff_path, network)

        return builder.build_cuda_engine(network)

# Loads a test case into the provided pagelocked_buffer. Returns loaded test case label. 
開發者ID:aimuch,項目名稱:iAI,代碼行數:14,代碼來源:mnist_uff_custom_plugin.py

示例12: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(deploy_file, model_file):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.CaffeParser() as parser:
        builder.max_workspace_size = common.GiB(1)

        # Set the parser's plugin factory. Note that we bind the factory to a reference so
        # that we can destroy it later. (parser.plugin_factory_ext is a write-only attribute)
        parser.plugin_factory_ext = fc_factory

        # Parse the model and build the engine.
        model_tensors = parser.parse(deploy=deploy_file, model=model_file, network=network, dtype=ModelData.DTYPE)
        network.mark_output(model_tensors.find(ModelData.OUTPUT_NAME))
        return builder.build_cuda_engine(network)

# Tries to load an engine from the provided engine_path, or builds and saves an engine to the engine_path. 
開發者ID:aimuch,項目名稱:iAI,代碼行數:16,代碼來源:sample.py

示例13: build_engine_caffe

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine_caffe(model_file, deploy_file):
    # You can set the logger severity higher to suppress messages (or lower to display more messages).
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.CaffeParser() as parser:
        # Workspace size is the maximum amount of memory available to the builder while building an engine.
        # It should generally be set as high as possible.
        builder.max_workspace_size = common.GiB(1)
        # Load the Caffe model and parse it in order to populate the TensorRT network.
        # This function returns an object that we can query to find tensors by name.
        model_tensors = parser.parse(deploy=deploy_file, model=model_file, network=network, dtype=ModelData.DTYPE)
        # For Caffe, we need to manually mark the output of the network.
        # Since we know the name of the output tensor, we can find it in model_tensors.
        network.mark_output(model_tensors.find(ModelData.OUTPUT_NAME))
        return builder.build_cuda_engine(network) 
開發者ID:aimuch,項目名稱:iAI,代碼行數:15,代碼來源:caffe_resnet50.py

示例14: get_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def get_engine(onnx_file_path, engine_file_path=""):
    """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
    def build_engine():
        """Takes an ONNX file and creates a TensorRT engine to run inference with"""
        with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
            builder.max_workspace_size = 1 << 28 # 256MiB
            builder.max_batch_size = 1
            # Parse model file
            if not os.path.exists(onnx_file_path):
                print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
                exit(0)
            print('Loading ONNX file from path {}...'.format(onnx_file_path))
            with open(onnx_file_path, 'rb') as model:
                print('Beginning ONNX file parsing')
                parser.parse(model.read())
            print('Completed parsing of ONNX file')
            print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
            engine = builder.build_cuda_engine(network)
            print("Completed creating Engine")
            with open(engine_file_path, "wb") as f:
                f.write(engine.serialize())
            return engine

    if os.path.exists(engine_file_path):
        # If a serialized engine exists, use it instead of building an engine.
        print("Reading engine from file {}".format(engine_file_path))
        with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
            return runtime.deserialize_cuda_engine(f.read())
    else:
        return build_engine() 
開發者ID:aimuch,項目名稱:iAI,代碼行數:32,代碼來源:onnx_to_tensorrt.py

示例15: build_engine

# 需要導入模塊: import tensorrt [as 別名]
# 或者: from tensorrt import Builder [as 別名]
def build_engine(weights):
    # For more information on TRT basics, refer to the introductory samples.
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network:
        builder.max_workspace_size = common.GiB(1)
        # Set the refit flag in the builder
        builder.refittable = True;
        # Populate the network using weights from the PyTorch model.
        populate_network(network, weights)
        # Build and return an engine.
        return builder.build_cuda_engine(network)

# Loads a random test case from pytorch's DataLoader 
開發者ID:aimuch,項目名稱:iAI,代碼行數:14,代碼來源:sample.py


注:本文中的tensorrt.Builder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。