當前位置: 首頁>>代碼示例>>Python>>正文


Python logger.warn方法代碼示例

本文整理匯總了Python中tensorpack.utils.logger.warn方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.warn方法的具體用法?Python logger.warn怎麽用?Python logger.warn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.utils.logger的用法示例。


在下文中一共展示了logger.warn方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_imagenet_dataflow

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
        datadir, name, batch_size,
        augmentors, meta_dir=None, parallel=None):
    """
    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    assert datadir is not None
    assert isinstance(augmentors, list)
    isTrain = name == 'train'
    
    #parallel = 1
    
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 2)  # assuming hyperthreading
    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, meta_dir=meta_dir, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = PrefetchDataZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, meta_dir= meta_dir, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = PrefetchDataZMQ(ds, 1)
    return ds 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:38,代碼來源:imagenet_utils.py

示例2: get_imagenet_dataflow

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
        datadir, name, batch_size,
        augmentors, parallel=None):
    """
    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    assert datadir is not None
    assert isinstance(augmentors, list)
    isTrain = name == 'train'
    meta_dir = os.path.join(datadir, "meta")
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count())
    if isTrain:
        ds = Imagenet5k(datadir, name, meta_dir=meta_dir, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = PrefetchDataZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = Imagenet5kFiles(datadir, name, meta_dir=meta_dir, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = PrefetchDataZMQ(ds, 1)
    return ds 
開發者ID:qinenergy,項目名稱:webvision-2.0-benchmarks,代碼行數:36,代碼來源:imagenet_utils.py

示例3: sample_cat_hallucinations

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def sample_cat_hallucinations(self, layer_ops, merge_ops,
        prob_at_layer=None, min_num_hallus=1, hallu_input_choice=None):
        """
        prob_at_layer : probility of having input from a layer. None is translated
            to default, which sample a layer proportional to its ch_dim. The ch_dim
            is computed using self, as we assume the last op is cat, and the cat
            determines the ch_dim.

        """
        assert self[-1].merge_op == LayerTypes.MERGE_WITH_CAT
        n_inputs = self.num_inputs()
        n_final_merge = len(self[-1].inputs)

        if prob_at_layer is None:
            prob_at_layer = np.ones(len(self) - 1)
            prob_at_layer[:n_inputs-1] = n_final_merge
            prob_at_layer[n_inputs-1] = n_final_merge * 1.5
            prob_at_layer = prob_at_layer / np.sum(prob_at_layer)
        assert len(prob_at_layer) >= len(self) - 1
        if len(prob_at_layer) > len(self) - 1:
            logger.warn("sample cell hallu cuts the prob_at_layer to len(info_list) - 1")
            prob_at_layer = prob_at_layer[:len(self)-1]

        # choose inputs
        n_hallu_inputs = 2
        l_hallu = []
        for _ in range(min_num_hallus):
            # replace == True : can connect multiple times to the same layer
            in_idxs = np.random.choice(list(range(len(prob_at_layer))),
                size=n_hallu_inputs, replace=False, p=prob_at_layer)
            in_ids = list(map(lambda idx : self[idx].id, in_idxs))
            main_ops = list(map(int, np.random.choice(layer_ops, size=n_hallu_inputs)))
            merge_op = int(np.random.choice(merge_ops))
            hallu = LayerInfo(layer_id=self[-1].id, inputs=in_ids,
                operations=main_ops + [merge_op])
            l_hallu.append(hallu)
        return l_hallu 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:39,代碼來源:layer_info.py

示例4: _process

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def _process(self, grads):
        g = []
        to_print = []
        for grad, var in grads:
            if re.match(self._regex, var.op.name):
                g.append((grad, var))
            else:
                to_print.append(var.op.name)
        if self._verbose and len(to_print):
            message = ', '.join(to_print)
            logger.warn("No gradient w.r.t these trainable variables: {}".format(message))
        return g 
開發者ID:andabi,項目名稱:deep-voice-conversion,代碼行數:14,代碼來源:tensorpack_extension.py

示例5: get_imagenet_dataflow

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
        datadir, name, batch_size,
        augmentors, parallel=None):
    """
    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    assert datadir is not None
    assert isinstance(augmentors, list)
    isTrain = name == 'train'
    if parallel is None:
        parallel = min(40, 16)  # assuming hyperthreading
    if isTrain:
        ds1 = ilsvrcsemi.ILSVRC12(datadir, name, shuffle=True, labeled=True)
        ds2 = ilsvrcsemi.ILSVRC12(datadir, name, shuffle=True, labeled=False)
        ds1 = AugmentImageComponent(ds1, augmentors, copy=False)
        ds2 = AugmentImageComponent(ds2, augmentors, copy=False)
        ds = JoinData([ds1, ds2])

        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = PrefetchDataZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls, im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = PrefetchDataZMQ(ds, 1)
    return ds 
開發者ID:qinenergy,項目名稱:adanet,代碼行數:39,代碼來源:imagenet_utils.py

示例6: get_imagenet_dataflow

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
        datadir, name, batch_size,
        augmentors=None, parallel=None):
    """
    Args:
        augmentors (list[imgaug.Augmentor]): Defaults to `fbresnet_augmentor(isTrain)`

    Returns: A DataFlow which produces BGR images and labels.

    See explanations in the tutorial:
    http://tensorpack.readthedocs.io/tutorial/efficient-dataflow.html
    """
    assert name in ['train', 'val', 'test']
    isTrain = name == 'train'
    assert datadir is not None
    if augmentors is None:
        augmentors = fbresnet_augmentor(isTrain)
    assert isinstance(augmentors, list)
    if parallel is None:
        parallel = min(40, multiprocessing.cpu_count() // 2)  # assuming hyperthreading

    if isTrain:
        ds = dataset.ILSVRC12(datadir, name, shuffle=True)
        ds = AugmentImageComponent(ds, augmentors, copy=False)
        if parallel < 16:
            logger.warn("DataFlow may become the bottleneck when too few processes are used.")
        ds = MultiProcessRunnerZMQ(ds, parallel)
        ds = BatchData(ds, batch_size, remainder=False)
    else:
        ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
        aug = imgaug.AugmentorList(augmentors)

        def mapf(dp):
            fname, cls = dp
            im = cv2.imread(fname, cv2.IMREAD_COLOR)
            im = aug.augment(im)
            return im, cls
        ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
        ds = BatchData(ds, batch_size, remainder=True)
        ds = MultiProcessRunnerZMQ(ds, 1)
    return ds 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:43,代碼來源:imagenet_utils.py

示例7: __init__

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def __init__(self, input, model, d_period=1, g_period=1):
        """
        Args:
            d_period(int): period of each d_opt run
            g_period(int): period of each g_opt run
        """
        super(SeparateGANTrainer, self).__init__()
        self._d_period = int(d_period)
        self._g_period = int(g_period)
        assert min(d_period, g_period) == 1

        # Setup input
        cbs = input.setup(model.get_input_signature())
        self.register_callback(cbs)

        # Build the graph
        self.tower_func = TowerFunc(model.build_graph, model.inputs())
        with TowerContext('', is_training=True), \
                argscope(BatchNorm, ema_update='internal'):
            # should not hook the EMA updates to both train_op, it will hurt training speed.
            self.tower_func(*input.get_input_tensors())
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        if len(update_ops):
            logger.warn("Found {} ops in UPDATE_OPS collection!".format(len(update_ops)))
            logger.warn("Using SeparateGANTrainer with UPDATE_OPS may hurt your training speed a lot!")

        opt = model.get_optimizer()
        with tf.name_scope('optimize'):
            self.d_min = opt.minimize(
                model.d_loss, var_list=model.d_vars, name='d_min')
            self.g_min = opt.minimize(
                model.g_loss, var_list=model.g_vars, name='g_min') 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:34,代碼來源:GAN.py

示例8: __init__

# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def __init__(self, input_size, args):
        super(AnytimeNetwork, self).__init__()
        self.options = args

        self.data_format = args.data_format
        self.ch_dim = 1 if self.data_format == 'channels_first' else 3
        self.h_dim = 1 + int(self.data_format == 'channels_first')
        self.w_dim = self.h_dim + 1

        self.input_size = input_size
        self.network_config = compute_cfg(self.options)
        self.total_units = sum(self.network_config.n_units_per_block)

        # Warn user if they are using imagenet but doesn't have the right channel
        self.init_channel = args.init_channel
        self.n_blocks = len(self.network_config.n_units_per_block)
        self.cumsum_blocks = np.cumsum(self.network_config.n_units_per_block)
        self.width = args.width
        self.num_classes = self.options.num_classes
        self.alter_label = self.options.alter_label
        self.alter_label_activate_frac = self.options.alter_label_activate_frac
        self.alter_loss_w = self.options.alter_loss_w

        self.options.ls_method = self.options.samloss
        if self.options.ls_method == ADALOSS_LS_METHOD:
            self.options.is_select_arr = True
            self.options.sum_rand_ratio = 0.0
            assert self.options.func_type != FUNC_TYPE_OPT

        self.weights = anytime_loss.loss_weights(self.total_units, self.options,
            cfg=self.network_config.n_units_per_block)
        self.weights_sum = np.sum(self.weights)
        self.ls_K = np.sum(np.asarray(self.weights) > 0)
        logger.info('weights: {}'.format(self.weights))

        # special names and conditions
        self.select_idx_name = "select_idx"

        # (UGLY) due to the history of development. 1,...,5 requires rewards
        self.options.require_rewards = self.options.samloss < 6 and \
            self.options.samloss > 0

        if self.options.func_type == FUNC_TYPE_OPT \
            and self.options.ls_method != NO_AANN_METHOD:
            # special case: if we are computing optimal, don't do AANN
            logger.warn("Computing optimal requires not running AANN."\
                +" Setting samloss to be {}".format(NO_AANN_METHOD))
            self.options.ls_method = NO_AANN_METHOD
            self.options.samloss = NO_AANN_METHOD

        self.input_type = tf.float32 if self.options.input_type == 'float32' else tf.uint8
        if self.options.do_mean_std_gpu_process:
            if not hasattr(self.options, 'mean'):
                raise Exception('gpu_graph expects mean but it is not in the options')
            if not hasattr(self.options, 'std'):
                raise Exception('gpu_graph expects std, but it is not in the options')

        logger.info('the final options: {}'.format(self.options)) 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:60,代碼來源:anytime_network.py


注:本文中的tensorpack.utils.logger.warn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。