本文整理匯總了Python中tensorpack.utils.logger.warn方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.warn方法的具體用法?Python logger.warn怎麽用?Python logger.warn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorpack.utils.logger
的用法示例。
在下文中一共展示了logger.warn方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_imagenet_dataflow
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors, meta_dir=None, parallel=None):
"""
See explanations in the tutorial:
http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
assert datadir is not None
assert isinstance(augmentors, list)
isTrain = name == 'train'
#parallel = 1
if parallel is None:
parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading
if isTrain:
ds = dataset.ILSVRC12(datadir, name, meta_dir=meta_dir, shuffle=True)
ds = AugmentImageComponent(ds, augmentors, copy=False)
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = PrefetchDataZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = dataset.ILSVRC12Files(datadir, name, meta_dir= meta_dir, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = PrefetchDataZMQ(ds, 1)
return ds
示例2: get_imagenet_dataflow
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors, parallel=None):
"""
See explanations in the tutorial:
http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
assert datadir is not None
assert isinstance(augmentors, list)
isTrain = name == 'train'
meta_dir = os.path.join(datadir, "meta")
if parallel is None:
parallel = min(40, multiprocessing.cpu_count())
if isTrain:
ds = Imagenet5k(datadir, name, meta_dir=meta_dir, shuffle=True)
ds = AugmentImageComponent(ds, augmentors, copy=False)
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = PrefetchDataZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = Imagenet5kFiles(datadir, name, meta_dir=meta_dir, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = PrefetchDataZMQ(ds, 1)
return ds
示例3: sample_cat_hallucinations
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def sample_cat_hallucinations(self, layer_ops, merge_ops,
prob_at_layer=None, min_num_hallus=1, hallu_input_choice=None):
"""
prob_at_layer : probility of having input from a layer. None is translated
to default, which sample a layer proportional to its ch_dim. The ch_dim
is computed using self, as we assume the last op is cat, and the cat
determines the ch_dim.
"""
assert self[-1].merge_op == LayerTypes.MERGE_WITH_CAT
n_inputs = self.num_inputs()
n_final_merge = len(self[-1].inputs)
if prob_at_layer is None:
prob_at_layer = np.ones(len(self) - 1)
prob_at_layer[:n_inputs-1] = n_final_merge
prob_at_layer[n_inputs-1] = n_final_merge * 1.5
prob_at_layer = prob_at_layer / np.sum(prob_at_layer)
assert len(prob_at_layer) >= len(self) - 1
if len(prob_at_layer) > len(self) - 1:
logger.warn("sample cell hallu cuts the prob_at_layer to len(info_list) - 1")
prob_at_layer = prob_at_layer[:len(self)-1]
# choose inputs
n_hallu_inputs = 2
l_hallu = []
for _ in range(min_num_hallus):
# replace == True : can connect multiple times to the same layer
in_idxs = np.random.choice(list(range(len(prob_at_layer))),
size=n_hallu_inputs, replace=False, p=prob_at_layer)
in_ids = list(map(lambda idx : self[idx].id, in_idxs))
main_ops = list(map(int, np.random.choice(layer_ops, size=n_hallu_inputs)))
merge_op = int(np.random.choice(merge_ops))
hallu = LayerInfo(layer_id=self[-1].id, inputs=in_ids,
operations=main_ops + [merge_op])
l_hallu.append(hallu)
return l_hallu
示例4: _process
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def _process(self, grads):
g = []
to_print = []
for grad, var in grads:
if re.match(self._regex, var.op.name):
g.append((grad, var))
else:
to_print.append(var.op.name)
if self._verbose and len(to_print):
message = ', '.join(to_print)
logger.warn("No gradient w.r.t these trainable variables: {}".format(message))
return g
示例5: get_imagenet_dataflow
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors, parallel=None):
"""
See explanations in the tutorial:
http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
assert datadir is not None
assert isinstance(augmentors, list)
isTrain = name == 'train'
if parallel is None:
parallel = min(40, 16) # assuming hyperthreading
if isTrain:
ds1 = ilsvrcsemi.ILSVRC12(datadir, name, shuffle=True, labeled=True)
ds2 = ilsvrcsemi.ILSVRC12(datadir, name, shuffle=True, labeled=False)
ds1 = AugmentImageComponent(ds1, augmentors, copy=False)
ds2 = AugmentImageComponent(ds2, augmentors, copy=False)
ds = JoinData([ds1, ds2])
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = PrefetchDataZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls, im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = PrefetchDataZMQ(ds, 1)
return ds
示例6: get_imagenet_dataflow
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors=None, parallel=None):
"""
Args:
augmentors (list[imgaug.Augmentor]): Defaults to `fbresnet_augmentor(isTrain)`
Returns: A DataFlow which produces BGR images and labels.
See explanations in the tutorial:
http://tensorpack.readthedocs.io/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
isTrain = name == 'train'
assert datadir is not None
if augmentors is None:
augmentors = fbresnet_augmentor(isTrain)
assert isinstance(augmentors, list)
if parallel is None:
parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading
if isTrain:
ds = dataset.ILSVRC12(datadir, name, shuffle=True)
ds = AugmentImageComponent(ds, augmentors, copy=False)
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = MultiProcessRunnerZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = dataset.ILSVRC12Files(datadir, name, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = MultiProcessRunnerZMQ(ds, 1)
return ds
示例7: __init__
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def __init__(self, input, model, d_period=1, g_period=1):
"""
Args:
d_period(int): period of each d_opt run
g_period(int): period of each g_opt run
"""
super(SeparateGANTrainer, self).__init__()
self._d_period = int(d_period)
self._g_period = int(g_period)
assert min(d_period, g_period) == 1
# Setup input
cbs = input.setup(model.get_input_signature())
self.register_callback(cbs)
# Build the graph
self.tower_func = TowerFunc(model.build_graph, model.inputs())
with TowerContext('', is_training=True), \
argscope(BatchNorm, ema_update='internal'):
# should not hook the EMA updates to both train_op, it will hurt training speed.
self.tower_func(*input.get_input_tensors())
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if len(update_ops):
logger.warn("Found {} ops in UPDATE_OPS collection!".format(len(update_ops)))
logger.warn("Using SeparateGANTrainer with UPDATE_OPS may hurt your training speed a lot!")
opt = model.get_optimizer()
with tf.name_scope('optimize'):
self.d_min = opt.minimize(
model.d_loss, var_list=model.d_vars, name='d_min')
self.g_min = opt.minimize(
model.g_loss, var_list=model.g_vars, name='g_min')
示例8: __init__
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import warn [as 別名]
def __init__(self, input_size, args):
super(AnytimeNetwork, self).__init__()
self.options = args
self.data_format = args.data_format
self.ch_dim = 1 if self.data_format == 'channels_first' else 3
self.h_dim = 1 + int(self.data_format == 'channels_first')
self.w_dim = self.h_dim + 1
self.input_size = input_size
self.network_config = compute_cfg(self.options)
self.total_units = sum(self.network_config.n_units_per_block)
# Warn user if they are using imagenet but doesn't have the right channel
self.init_channel = args.init_channel
self.n_blocks = len(self.network_config.n_units_per_block)
self.cumsum_blocks = np.cumsum(self.network_config.n_units_per_block)
self.width = args.width
self.num_classes = self.options.num_classes
self.alter_label = self.options.alter_label
self.alter_label_activate_frac = self.options.alter_label_activate_frac
self.alter_loss_w = self.options.alter_loss_w
self.options.ls_method = self.options.samloss
if self.options.ls_method == ADALOSS_LS_METHOD:
self.options.is_select_arr = True
self.options.sum_rand_ratio = 0.0
assert self.options.func_type != FUNC_TYPE_OPT
self.weights = anytime_loss.loss_weights(self.total_units, self.options,
cfg=self.network_config.n_units_per_block)
self.weights_sum = np.sum(self.weights)
self.ls_K = np.sum(np.asarray(self.weights) > 0)
logger.info('weights: {}'.format(self.weights))
# special names and conditions
self.select_idx_name = "select_idx"
# (UGLY) due to the history of development. 1,...,5 requires rewards
self.options.require_rewards = self.options.samloss < 6 and \
self.options.samloss > 0
if self.options.func_type == FUNC_TYPE_OPT \
and self.options.ls_method != NO_AANN_METHOD:
# special case: if we are computing optimal, don't do AANN
logger.warn("Computing optimal requires not running AANN."\
+" Setting samloss to be {}".format(NO_AANN_METHOD))
self.options.ls_method = NO_AANN_METHOD
self.options.samloss = NO_AANN_METHOD
self.input_type = tf.float32 if self.options.input_type == 'float32' else tf.uint8
if self.options.do_mean_std_gpu_process:
if not hasattr(self.options, 'mean'):
raise Exception('gpu_graph expects mean but it is not in the options')
if not hasattr(self.options, 'std'):
raise Exception('gpu_graph expects std, but it is not in the options')
logger.info('the final options: {}'.format(self.options))