本文整理匯總了Python中tensorpack.utils.logger.info方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.info方法的具體用法?Python logger.info怎麽用?Python logger.info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorpack.utils.logger
的用法示例。
在下文中一共展示了logger.info方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_graph
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def build_graph(self, image, label):
image = ImageNetModel.image_preprocess(image, bgr=self.image_bgr)
assert self.data_format in ['NCHW', 'NHWC']
if self.data_format == 'NCHW':
image = tf.transpose(image, [0, 3, 1, 2])
logits = self.get_logits(image)
print('self.label_smoothing', self.label_smoothing)
loss = ImageNetModel.compute_loss_and_error(logits, label, self.label_smoothing)
if self.weight_decay > 0:
wd_loss = regularize_cost(self.weight_decay_pattern,
tf.contrib.layers.l2_regularizer(self.weight_decay),
name='l2_regularize_loss')
add_moving_summary(loss, wd_loss)
total_cost = tf.add_n([loss, wd_loss], name='cost')
else:
total_cost = tf.identity(loss, name='cost')
add_moving_summary(total_cost)
if self.loss_scale != 1.:
logger.info("Scaling the total loss by {} ...".format(self.loss_scale))
return total_cost * self.loss_scale
else:
return total_cost
示例2: build_graph
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def build_graph(self, image, label):
image = self.image_preprocess(image)
assert self.data_format == 'NCHW'
image = tf.transpose(image, [0, 3, 1, 2])
logits = self.get_logits(image)
loss = ImageNetModel.compute_loss_and_error(
logits, label, label_smoothing=self.label_smoothing)
if self.weight_decay > 0:
wd_loss = regularize_cost(self.weight_decay_pattern,
tf.contrib.layers.l2_regularizer(self.weight_decay),
name='l2_regularize_loss')
add_moving_summary(loss, wd_loss)
total_cost = tf.add_n([loss, wd_loss], name='cost')
else:
total_cost = tf.identity(loss, name='cost')
add_moving_summary(total_cost)
if self.loss_scale != 1.:
logger.info("Scaling the total loss by {} ...".format(self.loss_scale))
return total_cost * self.loss_scale
else:
return total_cost
示例3: calc_flops
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def calc_flops(model):
# manually build the graph with batch=1
input_desc = [
InputDesc(tf.float32, [1, model.image_size, model.image_size, 3], "input"),
InputDesc(tf.int32, [1], "label")
]
input = PlaceholderInput()
input.setup(input_desc)
with TowerContext("", is_training=False):
model.build_graph(*input.get_input_tensors())
model_utils.describe_trainable_vars()
tf.profiler.profile(
tf.get_default_graph(),
cmd="op",
options=tf.profiler.ProfileOptionBuilder.float_operation())
logger.info("Note that TensorFlow counts flops in a different way from the paper.")
logger.info("TensorFlow counts multiply+add as two flops, however the paper counts them "
"as 1 flop because it can be executed in one instruction.")
示例4: _create_info_merge
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def _create_info_merge(next_id, h_id, o_id, aux_weight, is_candidate,
final_merge_op=LayerTypes.MERGE_WITH_SUM,
hallu_gate_layer=LayerTypes.NO_FORWARD_LAYER):
"""
Form the LayerInfo for the merge operation between hallu of id h_id and the original
tensor of id o_id (out_id). The new LayerInfo will have info.id == next_id.
Return a list of layers used for merging
Note any change to this function need to be mirrored in _finalize_info_merge
"""
inputs = [None] * 2
inputs[LayerInfoList.ORIG_IDX_IN_MERGE_HALLU] = o_id
inputs[LayerInfoList.HALLU_IDX_IN_MERGE_HALLU] = h_id
operations = [LayerTypes.IDENTITY] * 2 + [final_merge_op]
operations[LayerInfoList.HALLU_IDX_IN_MERGE_HALLU] = hallu_gate_layer
info = LayerInfo(next_id, inputs=inputs, operations=operations,
aux_weight=aux_weight, is_candidate=is_candidate)
return [info]
示例5: _remove_connection_from_id
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def _remove_connection_from_id(info, id_to_remove):
if not id_to_remove in info.inputs:
return info
if isinstance(info.stop_gradient, list):
assert len(info.stop_gradient) == len(info.inputs), \
"Invalid info {}".format(info)
if isinstance(info.down_sampling, list):
assert len(info.down_sampling) == len(info.inputs), \
"Invalid info {}".format(info)
assert len(info.operations) == len(info.inputs) + 1, \
"Invalid info {}".format(info)
idx = 0
while idx < len(info.inputs):
if info.inputs[idx] == id_to_remove:
del info.inputs[idx]
del info.operations[idx]
if isinstance(info.stop_gradient, list):
del info.stop_gradient[idx]
if isinstance(info.down_sampling, list):
del info.down_sampling[idx]
idx += 1
return info
示例6: critic_predictor
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def critic_predictor(ctrl, model_dir, vs_name):
"""
Create an OfflinePredictorWithSaver for test-time use.
"""
model = critic_factory(ctrl, is_train=False, vs_name=vs_name)
output_names = ['{}/predicted_accuracy:0'.format(vs_name)]
session_config=None
if ctrl.critic_type == CriticTypes.LSTM:
session_config = tf.ConfigProto(device_count = {'GPU': 0})
pred_config = PredictConfig(
model=model,
input_names=model.input_names,
output_names=output_names,
session_creator=NewSessionCreator(config=session_config)
)
if model_dir:
ckpt = tf.train.latest_checkpoint(model_dir)
logger.info("Loading {} predictor from {}".format(vs_name, ckpt))
if ckpt:
pred_config.session_init = SaverRestore(ckpt)
predictor = OfflinePredictorWithSaver(pred_config)
return predictor
示例7: crawl_ve_from_remote_logs
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def crawl_ve_from_remote_logs(mi_info, dn):
"""
deprecated do not use
Args:
mi_info : a dict mapping from model iter to ModelSearchInfo
dn : directory path of the one that directly contains the server log.log, i.e.,
the remote logs are in {dn}/{model_iter}/log.log
"""
for mi in mi_info:
info = mi_info[mi]
if info.ve is None or info.ve > 1.0:
log_fn = os.path.join(dn, str(mi), 'log.log')
if os.path.exists(log_fn):
ve = grep_val_err_from_log(log_fn)
mi_info[mi].ve = ve
return mi_info
示例8: _log_convex_hull_parent_choice
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def _log_convex_hull_parent_choice(self, q_parent, mi_info, e_idx):
l_pqef = [
pqef for pqef in q_parent.all_as_generator(full_info=True)
]
l_mi, l_ve, l_fp, l_te, l_cnt = [], [], [], [], []
for pqef in l_pqef:
mi = pqef[IDX_PQE].model_iter
l_mi.append(mi)
l_ve.append(mi_info[mi].ve)
l_fp.append(mi_info[mi].fp)
l_cnt.append(pqef[IDX_CNT])
logger.info(
"CONVEX HULL info:\nl_fp={}\nl_ve={}\nl_cnt={}\nl_mi={}".format(
l_fp, l_ve, l_cnt, l_mi
))
logger.info("Chose parent e_idx={} mi={}".format(e_idx, l_mi[e_idx]))
示例9: __init__
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def __init__(self, options):
super(PetridishModel, self).__init__()
self.options = options
# Classification info
self.prediction_feature = options.prediction_feature
self.out_filters = options.init_channel
self.stem_channel_rate = options.stem_channel_rate
self.data_format = options.data_format
# LayerInfoList as a record of the mathematical graph
self.net_info = options.net_info
self.master = self.net_info.master
self.is_cell_based = self.net_info.is_cell_based()
self.n_layers = len(self.master)
self.n_aux_preds = sum([int(x.aux_weight > 0) for x in self.master])
self.ch_dim = _data_format_to_ch_dim(self.data_format)
self.params_to_regularize = None
self.compute_hallu_stats = False
if hasattr(options, 'compute_hallu_stats'):
self.compute_hallu_stats = options.compute_hallu_stats
示例10: generate_regression_callbacks
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def generate_regression_callbacks(layer_info_list, name_only=False):
"""
A list of callbacks for getting validation errors.
"""
vcs = []
names = []
for info in layer_info_list:
if info.aux_weight > 0:
scope_name = scope_prediction(info.id)
name = scope_name+'/mean_square_error:0'
vcs.append(ScalarStats(\
names=name,
prefix='val_'))
names.append(name)
if name_only:
return names
return vcs
示例11: fork_and_train_model
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def fork_and_train_model(ipc, options, log_dir, child_dir, prev_dir,
model_str, model_iter, parent_iter, search_depth, job_type):
"""
Spawn a process to write a script for the crawler. then
wait for the crawler to finish. Aftewards, report to the
main process.
"""
entry_func = partial(
train_child_remotely,
model_options=options, log_dir=log_dir,
child_dir=child_dir, prev_dir=prev_dir,
curr_iter=model_iter)
#logger.info('Remote child {} will check finish in dir {}'.format(
# model_iter, log_dir))
stop_func = partial(has_stopped, log_dir=log_dir)
msg_func = lambda model_str=model_str, \
model_iter=model_iter, parent_iter=parent_iter, \
search_depth=search_depth, job_type=job_type \
: [ model_str, model_iter, parent_iter, search_depth, job_type ]
ipc.spawn(job_type, entry_func, stop_func, msg_func, sleep_time=1)
示例12: __init__
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def __init__(self, args):
super(AnytimeFCN, self).__init__(None, args)
# Class weight for fully convolutional networks
self.class_weight = None
if hasattr(args, 'class_weight'):
self.class_weight = args.class_weight
if self.class_weight is None:
self.class_weight = np.ones(self.num_classes, dtype=np.float32)
logger.info('Class weights: {}'.format(self.class_weight))
self.is_label_one_hot = args.is_label_one_hot
self.eval_threshold = args.eval_threshold
self.do_scale_feat_to_label = args.do_scale_feat_to_label
self.n_pools = args.n_pools if not self.do_scale_feat_to_label else 0
self.is_atrous = args.is_atrous
self.output_stride = args.output_stride
# base_o_s / o_s * base_rate ; base_o_s == 16
self.atrous_rates = [6,12,18]
self.atrous_rates_base_output_stride = 16
self.input_height = args.input_height
self.input_width = args.input_width
示例13: input_transform
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def input_transform(self, points, k=3):
# [B,N,3] --> [3, k]
num_point = points.get_shape()[1]
points = tf.expand_dims(points, -1)
with argscope(Conv2D, nl=BNReLU, padding='VALID'), \
argscope(FullyConnected, nl=BNReLU):
transmat = (LinearWrap(points)
.Conv2D('tconv0', 64, kernel_shape=[1, 3])
.Conv2D('tconv1', 128, kernel_shape=1)
.Conv2D('tconv2', 1024, kernel_shape=1)
.MaxPooling('tpool0', [num_point, 1])
.FullyConnected('tfc0', 512, nl=BNReLU)
.FullyConnected('tfc1', 256, nl=BNReLU)
.TransformPoints('transf_xyz', 3, in_dim=3)())
logger.info('transformation matrix: {}\n\n'.format(transmat.get_shape()))
return transmat
示例14: _parameter_net
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def _parameter_net(self, theta, kernel_shape=9):
"""Estimate filters for convolution layers
Args:
theta: angle of filter
kernel_shape: size of each filter
Returns:
learned filter as [B, k, k, 1]
"""
with argscope(LeakyReLU, alpha=0.2), \
argscope(FullyConnected, nl=LeakyReLU):
net = FullyConnected('fc1', theta, 64)
net = FullyConnected('fc2', net, 128)
pred_filter = FullyConnected('fc3', net, kernel_shape ** 2, nl=tf.identity)
pred_filter = tf.reshape(pred_filter, [BATCH, kernel_shape, kernel_shape, 1], name="pred_filter")
logger.info('Parameter net output: {}'.format(pred_filter.get_shape().as_list()))
return pred_filter
示例15: build_graph
# 需要導入模塊: from tensorpack.utils import logger [as 別名]
# 或者: from tensorpack.utils.logger import info [as 別名]
def build_graph(self, image, label):
image = self.image_preprocess(image)
assert self.data_format in ['NCHW', 'NHWC']
if self.data_format == 'NCHW':
image = tf.transpose(image, [0, 3, 1, 2])
logits = self.get_logits(image)
loss = ImageNetModel.compute_loss_and_error(
logits, label, label_smoothing=self.label_smoothing)
if self.weight_decay > 0:
wd_loss = regularize_cost(self.weight_decay_pattern,
tf.contrib.layers.l2_regularizer(self.weight_decay),
name='l2_regularize_loss')
add_moving_summary(loss, wd_loss)
total_cost = tf.add_n([loss, wd_loss], name='cost')
else:
total_cost = tf.identity(loss, name='cost')
add_moving_summary(total_cost)
if self.loss_scale != 1.:
logger.info("Scaling the total loss by {} ...".format(self.loss_scale))
return total_cost * self.loss_scale
else:
return total_cost