當前位置: 首頁>>代碼示例>>Python>>正文


Python gpu.get_num_gpu方法代碼示例

本文整理匯總了Python中tensorpack.utils.gpu.get_num_gpu方法的典型用法代碼示例。如果您正苦於以下問題:Python gpu.get_num_gpu方法的具體用法?Python gpu.get_num_gpu怎麽用?Python gpu.get_num_gpu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.utils.gpu的用法示例。


在下文中一共展示了gpu.get_num_gpu方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config(model):
    nr_tower = max(get_num_gpu(), 1)
    assert FLAGS.batch % nr_tower == 0
    batch = FLAGS.batch // nr_tower

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))

    data = QueueInput(get_dataflow(FLAGS.train_list_filename, batch))

    # learning rate
    START_LR = FLAGS.lr
    BASE_LR = START_LR * (FLAGS.batch / 256.0)
    lr_list = []
    for idx, decay_point in enumerate(FLAGS.lr_decay_points):
        lr_list.append((decay_point, BASE_LR * 0.1 ** idx))
    callbacks = [
        ScopeModelSaver(checkpoint_dir=FLAGS.RHP_savepath, scope='RHP'),
        EstimatedTimeLeft(),
        ScheduledHyperParamSetter('learning_rate', lr_list),
    ]

    if get_num_gpu() > 0:
        callbacks.append(GPUUtilizationTracker())

    return TrainConfig(
        model=model,
        data=data,
        callbacks=callbacks,
        steps_per_epoch=FLAGS.steps_per_epoch // FLAGS.batch,
        max_epoch=FLAGS.max_epoch,
        session_init=MultipleRestore()
    ) 
開發者ID:LiYingwei,項目名稱:Regional-Homogeneity,代碼行數:34,代碼來源:train.py

示例2: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config():
    nr_tower = max(get_num_gpu(), 1)
    batch = args.batch
    total_batch = batch * nr_tower
    assert total_batch >= 256   # otherwise the learning rate warmup is wrong.
    BASE_LR = 0.01 * (total_batch / 256.)

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
    dataset_train = get_data('train', batch)
    dataset_val = get_data('val', batch)

    infs = [ClassificationError('wrong-top1', 'val-error-top1'),
            ClassificationError('wrong-top5', 'val-error-top5')]
    callbacks = [
        ModelSaver(),
        GPUUtilizationTracker(),
        EstimatedTimeLeft(),
        ScheduledHyperParamSetter(
            'learning_rate',
            [(0, 0.01), (3, max(BASE_LR, 0.01))], interp='linear'),
        ScheduledHyperParamSetter(
            'learning_rate',
            [(30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2), (80, BASE_LR * 1e-3)]),
        DataParallelInferenceRunner(
            dataset_val, infs, list(range(nr_tower))),
    ]

    input = QueueInput(dataset_train)
    input = StagingInput(input, nr_stage=1)
    return TrainConfig(
        model=Model(),
        data=input,
        callbacks=callbacks,
        steps_per_epoch=1281167 // total_batch,
        max_epoch=100,
    ) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:38,代碼來源:vgg16.py

示例3: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config():
    nr_tower = max(get_num_gpu(), 1)
    batch = args.batch
    total_batch = batch * nr_tower
    if total_batch != 128:
        logger.warn("AlexNet needs to be trained with a total batch size of 128.")
    BASE_LR = 0.01 * (total_batch / 128.)

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
    dataset_train = get_data('train', batch)
    dataset_val = get_data('val', batch)

    infs = [ClassificationError('wrong-top1', 'val-error-top1'),
            ClassificationError('wrong-top5', 'val-error-top5')]
    callbacks = [
        ModelSaver(),
        GPUUtilizationTracker(),
        EstimatedTimeLeft(),
        ScheduledHyperParamSetter(
            'learning_rate',
            [(0, BASE_LR), (30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2), (80, BASE_LR * 1e-3)]),
        DataParallelInferenceRunner(
            dataset_val, infs, list(range(nr_tower))),
    ]

    return TrainConfig(
        model=Model(),
        data=StagingInput(QueueInput(dataset_train)),
        callbacks=callbacks,
        steps_per_epoch=1281167 // total_batch,
        max_epoch=100,
    ) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:34,代碼來源:alexnet.py

示例4: train_net

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def train_net(net,
              session_init,
              batch_size,
              num_epochs,
              train_dataflow,
              val_dataflow):

    num_towers = max(get_num_gpu(), 1)
    batch_per_tower = batch_size // num_towers
    logger.info("Running on {} towers. Batch size per tower: {}".format(num_towers, batch_per_tower))

    num_training_samples = 1281167
    step_size = num_training_samples // batch_size
    max_iter = (num_epochs - 1) * step_size
    callbacks = [
        ModelSaver(),
        ScheduledHyperParamSetter(
            "learning_rate",
            [(0, 0.5), (max_iter, 0)],
            interp="linear",
            step_based=True),
        EstimatedTimeLeft()]

    infs = [ClassificationError("wrong-top1", "val-error-top1"),
            ClassificationError("wrong-top5", "val-error-top5")]
    if num_towers == 1:
        # single-GPU inference with queue prefetch
        callbacks.append(InferenceRunner(
            input=QueueInput(val_dataflow),
            infs=infs))
    else:
        # multi-GPU inference (with mandatory queue prefetch)
        callbacks.append(DataParallelInferenceRunner(
            input=val_dataflow,
            infs=infs,
            gpus=list(range(num_towers))))

    config = TrainConfig(
        dataflow=train_dataflow,
        model=net,
        callbacks=callbacks,
        session_init=session_init,
        steps_per_epoch=step_size,
        max_epoch=num_epochs)

    launch_train_with_config(
        config=config,
        trainer=SyncMultiGPUTrainerParameterServer(num_towers)) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:50,代碼來源:train_tf.py

示例5: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config(model, fake=False):
    nr_tower = max(get_num_gpu(), 1)
    assert args.batch % nr_tower == 0
    batch = args.batch // nr_tower

    if fake:
        logger.info("For benchmark, batch size is fixed to 64 per tower.")
        dataset_train = FakeData(
            [[64, 224, 224, 3], [64]], 1000, random=False, dtype='uint8')
        callbacks = []
        steps_per_epoch = 100
    else:
        logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))

        dataset_train = get_imagenet_dataflow(args.data, 'train', batch)
        dataset_val = get_imagenet_dataflow(args.data, 'val', min(64, batch))
        steps_per_epoch = 1281167 // args.batch

        BASE_LR = 0.1 * args.batch / 256.0
        logger.info("BASELR: {}".format(BASE_LR))
        callbacks = [
            ModelSaver(),
            EstimatedTimeLeft(),
            GPUUtilizationTracker(),
            ScheduledHyperParamSetter(
                'learning_rate', [(0, BASE_LR), (30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2),
                                  (90, BASE_LR * 1e-3)]),
        ]
        if BASE_LR > 0.1:
            callbacks.append(
                ScheduledHyperParamSetter(
                    'learning_rate', [(0, 0.1), (5 * steps_per_epoch, BASE_LR)],
                    interp='linear', step_based=True))

        infs = [ClassificationError('wrong-top1', 'val-error-top1'),
                ClassificationError('wrong-top5', 'val-error-top5')]
        if nr_tower == 1:
            # single-GPU inference with queue prefetch
            callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
        else:
            # multi-GPU inference (with mandatory queue prefetch)
            callbacks.append(DataParallelInferenceRunner(
                dataset_val, infs, list(range(nr_tower))))

    return TrainConfig(
        model=model,
        dataflow=dataset_train,
        callbacks=callbacks,
        steps_per_epoch=steps_per_epoch,
        max_epoch=100,
    ) 
開發者ID:ppwwyyxx,項目名稱:GroupNorm-reproduce,代碼行數:53,代碼來源:imagenet-resnet-gn.py

示例6: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config(model, fake=False):
    nr_tower = max(get_num_gpu(), 1)
    assert args.batch % nr_tower == 0
    batch = args.batch // nr_tower

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
    if batch < 32 or batch > 64:
        logger.warn("Batch size per tower not in [32, 64]. This probably will lead to worse accuracy than reported.")
    if fake:
        data = QueueInput(FakeData(
            [[batch, 224, 224, 3], [batch],[batch, 224, 224, 3], [batch]], 1000, random=False, dtype='uint8'))
        callbacks = []
    else:
        data = QueueInput(get_data('train', batch))

        START_LR = 0.1
        BASE_LR = START_LR * (args.batch / 256.0)
        callbacks = [
            ModelSaver(),
            EstimatedTimeLeft(),
            ScheduledHyperParamSetter(
                'learning_rate', [
                    (0, min(START_LR, BASE_LR)), (30, BASE_LR * 1e-1), (45, BASE_LR * 1e-2),
                    (55, BASE_LR * 1e-3)]),
        ]
        if BASE_LR > START_LR:
            callbacks.append(
                ScheduledHyperParamSetter(
                    'learning_rate', [(0, START_LR), (5, BASE_LR)], interp='linear'))

        infs = [ClassificationError('wrong-top1', 'val-error-top1'),
                ClassificationError('wrong-top5', 'val-error-top5')]
        dataset_val = get_data('val', batch)
        if nr_tower == 1:
            # single-GPU inference with queue prefetch
            callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
        else:
            # multi-GPU inference (with mandatory queue prefetch)
            callbacks.append(DataParallelInferenceRunner(
                dataset_val, infs, list(range(nr_tower))))

    return AutoResumeTrainConfig(
        model=model,
        data=data,
        callbacks=callbacks,
        steps_per_epoch=100 if args.fake else 1280000 // args.batch,
        max_epoch=60,
    ) 
開發者ID:qinenergy,項目名稱:adanet,代碼行數:50,代碼來源:adanet-resnet.py

示例7: get_config

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def get_config(model):
    nr_tower = max(get_num_gpu(), 1)
    assert args.batch % nr_tower == 0
    batch = args.batch // nr_tower

    logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
    if batch < 32 or batch > 64:
        logger.warn("Batch size per tower not in [32, 64]. This probably will lead to worse accuracy than reported.")
    if args.fake:
        data = QueueInput(FakeData(
            [[batch, 224, 224, 3], [batch]], 1000, random=False, dtype='uint8'))
        callbacks = []
    else:
        if args.symbolic:
            data = TFDatasetInput(get_imagenet_tfdata(args.data, 'train', batch))
        else:
            data = QueueInput(get_imagenet_dataflow(args.data, 'train', batch))

        START_LR = 0.1
        BASE_LR = START_LR * (args.batch / 256.0)
        callbacks = [
            ModelSaver(),
            EstimatedTimeLeft(),
            ScheduledHyperParamSetter(
                'learning_rate', [
                    (0, min(START_LR, BASE_LR)), (30, BASE_LR * 1e-1), (60, BASE_LR * 1e-2),
                    (90, BASE_LR * 1e-3), (100, BASE_LR * 1e-4)]),
        ]
        if BASE_LR > START_LR:
            callbacks.append(
                ScheduledHyperParamSetter(
                    'learning_rate', [(0, START_LR), (5, BASE_LR)], interp='linear'))

        infs = [ClassificationError('wrong-top1', 'val-error-top1'),
                ClassificationError('wrong-top5', 'val-error-top5')]
        dataset_val = get_imagenet_dataflow(args.data, 'val', batch)
        if nr_tower == 1:
            # single-GPU inference with queue prefetch
            callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
        else:
            # multi-GPU inference (with mandatory queue prefetch)
            callbacks.append(DataParallelInferenceRunner(
                dataset_val, infs, list(range(nr_tower))))

    if get_num_gpu() > 0:
        callbacks.append(GPUUtilizationTracker())

    return TrainConfig(
        model=model,
        data=data,
        callbacks=callbacks,
        steps_per_epoch=100 if args.fake else 1281167 // args.batch,
        max_epoch=105,
    ) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:56,代碼來源:imagenet-resnet.py

示例8: train

# 需要導入模塊: from tensorpack.utils import gpu [as 別名]
# 或者: from tensorpack.utils.gpu import get_num_gpu [as 別名]
def train():
    # assign GPUs for training & inference
    num_gpu = get_num_gpu()
    global PREDICTOR_THREAD
    if num_gpu > 0:
        if num_gpu > 1:
            # use half gpus for inference
            predict_tower = list(range(num_gpu))[-num_gpu // 2:]
        else:
            predict_tower = [0]
        PREDICTOR_THREAD = len(predict_tower) * PREDICTOR_THREAD_PER_GPU
        train_tower = list(range(num_gpu))[:-num_gpu // 2] or [0]
        logger.info("[Batch-A3C] Train on gpu {} and infer on gpu {}".format(
            ','.join(map(str, train_tower)), ','.join(map(str, predict_tower))))
    else:
        logger.warn("Without GPU this model will never learn! CPU is only useful for debug.")
        PREDICTOR_THREAD = 1
        predict_tower, train_tower = [0], [0]

    # setup simulator processes
    name_base = str(uuid.uuid1())[:6]
    prefix = '@' if sys.platform.startswith('linux') else ''
    namec2s = 'ipc://{}sim-c2s-{}'.format(prefix, name_base)
    names2c = 'ipc://{}sim-s2c-{}'.format(prefix, name_base)
    procs = [MySimulatorWorker(k, namec2s, names2c) for k in range(SIMULATOR_PROC)]
    ensure_proc_terminate(procs)
    start_proc_mask_signal(procs)

    master = MySimulatorMaster(namec2s, names2c, predict_tower)
    config = TrainConfig(
        model=Model(),
        dataflow=master.get_training_dataflow(),
        callbacks=[
            ModelSaver(),
            ScheduledHyperParamSetter('learning_rate', [(20, 0.0003), (120, 0.0001)]),
            ScheduledHyperParamSetter('entropy_beta', [(80, 0.005)]),
            master,
            PeriodicTrigger(Evaluator(
                EVAL_EPISODE, ['state'], ['policy'], get_player),
                every_k_epochs=3),
        ],
        session_creator=sesscreate.NewSessionCreator(config=get_default_sess_config(0.5)),
        steps_per_epoch=STEPS_PER_EPOCH,
        session_init=SmartInit(args.load),
        max_epoch=1000,
    )
    trainer = SimpleTrainer() if num_gpu == 1 else AsyncMultiGPUTrainer(train_tower)
    launch_train_with_config(config, trainer) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:50,代碼來源:train-atari.py


注:本文中的tensorpack.utils.gpu.get_num_gpu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。