本文整理匯總了Python中tensorpack.tfutils.argscope.argscope方法的典型用法代碼示例。如果您正苦於以下問題:Python argscope.argscope方法的具體用法?Python argscope.argscope怎麽用?Python argscope.argscope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorpack.tfutils.argscope
的用法示例。
在下文中一共展示了argscope.argscope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resnet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet_backbone(image, num_blocks, group_func, block_func):
"""
Sec 5.1: We adopt the initialization of [15] for all convolutional layers.
TensorFlow does not have the true "MSRA init". We use variance_scaling as an approximation.
"""
with argscope(Conv2D, use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
l = Conv2D('conv0', image, 64, 7, strides=2, activation=BNReLU)
l = MaxPooling('pool0', l, pool_size=3, strides=2, padding='SAME')
l = group_func('group0', l, block_func, 64, num_blocks[0], 1)
l = group_func('group1', l, block_func, 128, num_blocks[1], 2)
l = group_func('group2', l, block_func, 256, num_blocks[2], 2)
l = group_func('group3', l, block_func, 512, num_blocks[3], 2)
l = GlobalAvgPooling('gap', l)
logits = FullyConnected('linear', l, 1000,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))
"""
Sec 5.1:
The 1000-way fully-connected layer is initialized by
drawing weights from a zero-mean Gaussian with standard
deviation of 0.01.
"""
return logits
示例2: alexnet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def alexnet_backbone(image, qw=1):
with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
W_init=tf.random_normal_initializer(stddev=0.01),
data_format=get_arg_scope()['Conv2D']['data_format'],
nbit=qw):
logits = (LinearWrap(image)
.Conv2DQuant('conv1', 96, 11, stride=4, is_quant=False, padding='VALID')
.MaxPooling('pool1', shape=3, stride=2, padding='VALID')
.BNReLUQuant('bnquant2')
.Conv2DQuant('conv2', 256, 5)
.MaxPooling('pool2', shape=3, stride=2, padding='VALID')
.BNReLUQuant('bnquant3')
.Conv2DQuant('conv3', 384, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv4', 384, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv5', 256, 3)
.MaxPooling('pool5', shape=3, stride=2, padding='VALID')
.BNReLUQuant('bnquant6')
.Conv2DQuant('fc6', 4096, 6, nl=getfcBNReLUQuant, padding='VALID', W_init=tf.random_normal_initializer(stddev=0.005), use_bias=True)
.Conv2DQuant('fc7', 4096, 1, nl=getfcBNReLU, padding='VALID', W_init=tf.random_normal_initializer(stddev=0.005), use_bias=True)
.FullyConnected('fc8', out_dim=1000, nl=tf.identity, W_init=tf.random_normal_initializer(stddev=0.01))())
return logits
示例3: densenet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def densenet_backbone(image, qw=1):
with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
W_init=variance_scaling_initializer(mode='FAN_IN'),
data_format=get_arg_scope()['Conv2D']['data_format'],
nbit=qw,
is_quant=True if qw > 0 else False):
logits = (LinearWrap(image)
.Conv2DQuant('conv1', 2 * GROWTH_RATE, 7, stride=2, nl=BNReLU, is_quant=False)
.MaxPooling('pool1', shape=3, stride=2, padding='SAME')
# 56
.apply(add_dense_block, 'block0', 6)
# 28
.apply(add_dense_block, 'block1', 12)
# 14
.apply(add_dense_block, 'block2', 24)
# 7
.apply(add_dense_block, 'block3', 16, last=True)
.BNReLU('bnrelu_last')
.GlobalAvgPooling('gap')
.FullyConnected('linear', out_dim=1000, nl=tf.identity, W_init=variance_scaling_initializer(mode='FAN_IN'))())
return logits
示例4: resnet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet_backbone(image, num_blocks, group_func, block_func):
with argscope(Conv2D, use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out', distribution='untruncated_normal')):
logits = (LinearWrap(image)
.tf.pad([[0, 0], [0, 0], [3, 3], [3, 3]])
.Conv2D('conv0', 64, 7, strides=2, activation=GNReLU, padding='VALID')
.tf.pad([[0, 0], [0, 0], [1, 1], [1, 1]])
.MaxPooling('pool0', shape=3, stride=2, padding='VALID')
.apply(group_func, 'group0', block_func, 64, num_blocks[0], 1)
.apply(group_func, 'group1', block_func, 128, num_blocks[1], 2)
.apply(group_func, 'group2', block_func, 256, num_blocks[2], 2)
.apply(group_func, 'group3', block_func, 512, num_blocks[3], 2)
.GlobalAvgPooling('gap')
.FullyConnected('linear', 1000,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))())
return logits
示例5: pretrained_resnet_conv4
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def pretrained_resnet_conv4(image, num_blocks):
assert len(num_blocks) == 3
with argscope([Conv2D, MaxPooling, BatchNorm], data_format='NCHW'), \
argscope(Conv2D, nl=tf.identity, use_bias=False), \
argscope(BatchNorm, use_local_stat=False):
l = tf.pad(image, [[0, 0], [0, 0], [2, 3], [2, 3]])
l = Conv2D('conv0', l, 64, 7, stride=2, nl=BNReLU, padding='VALID')
l = tf.pad(l, [[0, 0], [0, 0], [0, 1], [0, 1]])
l = MaxPooling('pool0', l, shape=3, stride=2, padding='VALID')
l = resnet_group(l, 'group0', resnet_bottleneck, 64, num_blocks[0], 1)
# TODO replace var by const to enable folding
l = tf.stop_gradient(l)
l = resnet_group(l, 'group1', resnet_bottleneck, 128, num_blocks[1], 2)
l = resnet_group(l, 'group2', resnet_bottleneck, 256, num_blocks[2], 2)
# 16x downsampling up to now
return l
示例6: rpn_head
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def rpn_head(featuremap, channel, num_anchors):
"""
Returns:
label_logits: fHxfWxNA
box_logits: fHxfWxNAx4
"""
with argscope(Conv2D, data_format='NCHW',
W_init=tf.random_normal_initializer(stddev=0.01)):
hidden = Conv2D('conv0', featuremap, channel, 3, nl=tf.nn.relu)
label_logits = Conv2D('class', hidden, num_anchors, 1)
box_logits = Conv2D('box', hidden, 4 * num_anchors, 1)
# 1, NA(*4), im/16, im/16 (NCHW)
label_logits = tf.transpose(label_logits, [0, 2, 3, 1]) # 1xfHxfWxNA
label_logits = tf.squeeze(label_logits, 0) # fHxfWxNA
shp = tf.shape(box_logits) # 1x(NAx4)xfHxfW
box_logits = tf.transpose(box_logits, [0, 2, 3, 1]) # 1xfHxfWx(NAx4)
box_logits = tf.reshape(box_logits, tf.stack([shp[2], shp[3], num_anchors, 4])) # fHxfWxNAx4
return label_logits, box_logits
示例7: fastrcnn_Xconv1fc_head
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def fastrcnn_Xconv1fc_head(feature, num_convs, norm=None):
"""
Args:
feature (NCHW):
num_classes(int): num_category + 1
num_convs (int): number of conv layers
norm (str or None): either None or 'GN'
Returns:
2D head feature
"""
assert norm in [None, 'GN'], norm
l = feature
with argscope(Conv2D, data_format='channels_first',
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out',
distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
for k in range(num_convs):
l = Conv2D('conv{}'.format(k), l, cfg.FPN.FRCNN_CONV_HEAD_DIM, 3, activation=tf.nn.relu)
if norm is not None:
l = GroupNorm('gn{}'.format(k), l)
l = FullyConnected('fc', l, cfg.FPN.FRCNN_FC_HEAD_DIM,
kernel_initializer=tf.variance_scaling_initializer(), activation=tf.nn.relu)
return l
示例8: maskrcnn_upXconv_head
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def maskrcnn_upXconv_head(feature, num_category, num_convs, norm=None):
"""
Args:
feature (NxCx s x s): size is 7 in C4 models and 14 in FPN models.
num_category(int):
num_convs (int): number of convolution layers
norm (str or None): either None or 'GN'
Returns:
mask_logits (N x num_category x 2s x 2s):
"""
assert norm in [None, 'GN'], norm
l = feature
with argscope([Conv2D, Conv2DTranspose], data_format='channels_first',
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out',
distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
# c2's MSRAFill is fan_out
for k in range(num_convs):
l = Conv2D('fcn{}'.format(k), l, cfg.MRCNN.HEAD_DIM, 3, activation=tf.nn.relu)
if norm is not None:
l = GroupNorm('gn{}'.format(k), l)
l = Conv2DTranspose('deconv', l, cfg.MRCNN.HEAD_DIM, 2, strides=2, activation=tf.nn.relu)
l = Conv2D('conv', l, num_category, 1, kernel_initializer=tf.random_normal_initializer(stddev=0.001))
return l
示例9: rpn_head
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def rpn_head(featuremap, channel, num_anchors):
"""
Returns:
label_logits: fHxfWxNA
box_logits: fHxfWxNAx4
"""
with argscope(Conv2D, data_format='channels_first',
kernel_initializer=tf.random_normal_initializer(stddev=0.01)):
hidden = Conv2D('conv0', featuremap, channel, 3, activation=tf.nn.relu)
label_logits = Conv2D('class', hidden, num_anchors, 1)
box_logits = Conv2D('box', hidden, 4 * num_anchors, 1)
# 1, NA(*4), im/16, im/16 (NCHW)
label_logits = tf.transpose(label_logits, [0, 2, 3, 1]) # 1xfHxfWxNA
label_logits = tf.squeeze(label_logits, 0) # fHxfWxNA
shp = tf.shape(box_logits) # 1x(NAx4)xfHxfW
box_logits = tf.transpose(box_logits, [0, 2, 3, 1]) # 1xfHxfWx(NAx4)
box_logits = tf.reshape(box_logits, tf.stack([shp[2], shp[3], num_anchors, 4])) # fHxfWxNAx4
return label_logits, box_logits
示例10: resnet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet_backbone(image, num_blocks, group_func, block_func):
with argscope(Conv2D, nl=tf.identity, use_bias=False,
W_init=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
logits = (LinearWrap(image)
.Conv2D('conv0', 64, 7, stride=2, nl=BNReLU)
.MaxPooling('pool0', shape=3, stride=2, padding='SAME')
.apply(group_func, 'group0', block_func, 64, num_blocks[0], 1)
.apply(group_func, 'group1', block_func, 128, num_blocks[1], 2)
.apply(group_func, 'group2', block_func, 256, num_blocks[2], 2)
.apply(group_func, 'group3', block_func, 512, num_blocks[3], 2)
.GlobalAvgPooling('gap')
.FullyConnected('linear', NUM_CLASSES, nl=tf.identity)())
return logits
示例11: googlenet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def googlenet_backbone(image, qw=1):
with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
W_init=variance_scaling_initializer(mode='FAN_IN'),
data_format=get_arg_scope()['Conv2D']['data_format'],
nbit=qw,
is_quant=True if qw > 0 else False):
logits = (LinearWrap(image)
.Conv2DQuant('conv1', 64, 7, stride=2, is_quant=False)
.MaxPooling('pool1', shape=3, stride=2, padding='SAME')
.BNReLUQuant('pool1/out')
.Conv2DQuant('conv2/3x3_reduce', 192, 1, nl=getBNReLUQuant)
.Conv2DQuant('conv2/3x3', 192, 3)
.MaxPooling('pool2', shape=3, stride=2, padding='SAME')
.BNReLUQuant('pool2/out')
.apply(inception_block, 'incpetion_3a', 96, 128, 32)
.apply(inception_block, 'incpetion_3b', 192, 192, 96, is_last_block=True)
.apply(inception_block, 'incpetion_4a', 256, 208, 48)
.apply(inception_block, 'incpetion_4b', 224, 224, 64)
.apply(inception_block, 'incpetion_4c', 192, 256, 64)
.apply(inception_block, 'incpetion_4d', 176, 288, 64)
.apply(inception_block, 'incpetion_4e', 384, 320, 128, is_last_block=True)
.apply(inception_block, 'incpetion_5a', 384, 320, 128)
.apply(inception_block, 'incpetion_5b', 512, 384, 128, is_last_block=True, is_last=True)
.GlobalAvgPooling('pool5')
.FullyConnected('linear', out_dim=1000, nl=tf.identity)())
return logits
示例12: vgg_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def vgg_backbone(image, qw=1):
with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
W_init=variance_scaling_initializer(mode='FAN_IN'),
data_format=get_arg_scope()['Conv2D']['data_format'],
nbit=qw):
logits = (LinearWrap(image)
.Conv2DQuant('conv1', 96, 7, stride=2, nl=tf.nn.relu, is_quant=False)
.MaxPooling('pool1', shape=2, stride=2, padding='VALID')
# 56
.BNReLUQuant('bnquant2_0')
.Conv2DQuant('conv2_1', 256, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv2_2', 256, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv2_3', 256, 3)
.MaxPooling('pool2', shape=2, stride=2, padding='VALID')
# 28
.BNReLUQuant('bnquant3_0')
.Conv2DQuant('conv3_1', 512, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv3_2', 512, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv3_3', 512, 3)
.MaxPooling('pool3', shape=2, stride=2, padding='VALID')
# 14
.BNReLUQuant('bnquant4_0')
.Conv2DQuant('conv4_1', 512, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv4_2', 512, 3, nl=getBNReLUQuant)
.Conv2DQuant('conv4_3', 512, 3)
.MaxPooling('pool4', shape=2, stride=2, padding='VALID')
# 7
.BNReLUQuant('bnquant5')
.Conv2DQuant('fc5', 4096, 7, nl=getfcBNReLUQuant, padding='VALID', use_bias=True)
.Conv2DQuant('fc6', 4096, 1, nl=getfcBNReLU, padding='VALID', use_bias=True)
.FullyConnected('fc7', out_dim=1000, nl=tf.identity, W_init=variance_scaling_initializer(mode='FAN_IN'))())
return logits
示例13: resnet_backbone
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet_backbone(image, num_blocks, group_func, block_func, qw=1):
with argscope(Conv2DQuant, nl=tf.identity, use_bias=False,
W_init=variance_scaling_initializer(mode='FAN_OUT'),
data_format=get_arg_scope()['Conv2D']['data_format'],
nbit=qw):
logits = (LinearWrap(image)
.Conv2DQuant('conv0', 64, 7, stride=2, nl=BNReLU, is_quant=False)
.MaxPooling('pool0', shape=3, stride=2, padding='SAME')
.apply(group_func, 'group0', block_func, 64, num_blocks[0], 1)
.apply(group_func, 'group1', block_func, 128, num_blocks[1], 2)
.apply(group_func, 'group2', block_func, 256, num_blocks[2], 2)
.apply(group_func, 'group3', block_func, 512, num_blocks[3], 2, is_last=True)
.GlobalAvgPooling('gap')
.FullyConnected('linear', 1000, nl=tf.identity)())
return logits
示例14: resnet
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet(input_, option):
mode = option.mode
DEPTH = option.depth
bottleneck = {'se': se_resnet_bottleneck}[mode]
cfg = {
50: ([3, 4, 6, 3], bottleneck),
}
defs, block_func = cfg[DEPTH]
group_func = resnet_group
with argscope(Conv2D, use_bias=False, kernel_initializer= \
tf.variance_scaling_initializer(scale=2.0, mode='fan_out')), \
argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm],
data_format='channels_first'):
l = Conv2D('conv0', input_, 64, 7, strides=2, activation=BNReLU)
if option.gating_position[0]: l = gating_op(l, option)
l = MaxPooling('pool0', l, 3, strides=2, padding='SAME')
if option.gating_position[1]: l = gating_op(l, option)
l = group_func('group0', l, block_func, 64, defs[0], 1, option)
if option.gating_position[2]: l = gating_op(l, option)
l = group_func('group1', l, block_func, 128, defs[1], 2, option)
if option.gating_position[3]: l = gating_op(l, option)
l = group_func('group2', l, block_func, 256, defs[2], 2, option)
if option.gating_position[4]: l = gating_op(l, option)
l = group_func('group3', l, block_func, 512, defs[3],
1, option)
if option.gating_position[5]: l = gating_op(l, option)
p_logits = GlobalAvgPooling('gap', l)
logits = FullyConnected('linearnew', p_logits, option.number_of_class)
return logits, l
示例15: resnet_conv5
# 需要導入模塊: from tensorpack.tfutils import argscope [as 別名]
# 或者: from tensorpack.tfutils.argscope import argscope [as 別名]
def resnet_conv5(image, num_block):
with argscope([Conv2D, BatchNorm], data_format='NCHW'), \
argscope(Conv2D, nl=tf.identity, use_bias=False), \
argscope(BatchNorm, use_local_stat=False):
# 14x14:
l = resnet_group(image, 'group3', resnet_bottleneck, 512, num_block, stride=2)
return l