當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Conv2D方法代碼示例

本文整理匯總了Python中tensorpack.models.Conv2D方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Conv2D方法的具體用法?Python models.Conv2D怎麽用?Python models.Conv2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.models的用法示例。


在下文中一共展示了models.Conv2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: res_blk

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def res_blk(name, l, ch, ksize, count, split=1, strides=1, freeze=False):
    ch_in = l.get_shape().as_list()
    with tf.variable_scope(name):
        for i in range(0, count):
            with tf.variable_scope('block' + str(i)):  
                x = l if i == 0 else BNReLU('preact', l)
                x = Conv2D('conv1', x, ch[0], ksize[0], activation=BNReLU)
                x = Conv2D('conv2', x, ch[1], ksize[1], split=split, 
                                strides=strides if i == 0 else 1, activation=BNReLU)
                x = Conv2D('conv3', x, ch[2], ksize[2], activation=tf.identity)
                if (strides != 1 or ch_in[1] != ch[2]) and i == 0:
                    l = Conv2D('convshortcut', l, ch[2], 1, strides=strides)
                x = tf.stop_gradient(x) if freeze else x
                l = l + x
        # end of each group need an extra activation
        l = BNReLU('bnlast',l)  
    return l
#### 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:20,代碼來源:graph.py

示例2: dense_blk

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def dense_blk(name, l, ch, ksize, count, split=1, padding='valid'):
    with tf.variable_scope(name):
        for i in range(0, count):
            with tf.variable_scope('blk/' + str(i)):
                x = BNReLU('preact_bna', l)
                x = Conv2D('conv1', x, ch[0], ksize[0], padding=padding, activation=BNReLU)
                x = Conv2D('conv2', x, ch[1], ksize[1], padding=padding, split=split)
                ##
                if padding == 'valid':
                    x_shape = x.get_shape().as_list()
                    l_shape = l.get_shape().as_list()
                    l = crop_op(l, (l_shape[2] - x_shape[2], 
                                    l_shape[3] - x_shape[3]))

                l = tf.concat([l, x], axis=1)
        l = BNReLU('blk_bna', l)
    return l
#### 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:20,代碼來源:graph.py

示例3: encoder

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def encoder(i, freeze):
    """
    Pre-activated ResNet50 Encoder
    """

    d1 = Conv2D('conv0',  i, 64, 7, padding='valid', strides=1, activation=BNReLU)
    d1 = res_blk('group0', d1, [ 64,  64,  256], [1, 3, 1], 3, strides=1, freeze=freeze)                       
    
    d2 = res_blk('group1', d1, [128, 128,  512], [1, 3, 1], 4, strides=2, freeze=freeze)
    d2 = tf.stop_gradient(d2) if freeze else d2

    d3 = res_blk('group2', d2, [256, 256, 1024], [1, 3, 1], 6, strides=2, freeze=freeze)
    d3 = tf.stop_gradient(d3) if freeze else d3

    d4 = res_blk('group3', d3, [512, 512, 2048], [1, 3, 1], 3, strides=2, freeze=freeze)
    d4 = tf.stop_gradient(d4) if freeze else d4
    
    d4 = Conv2D('conv_bot',  d4, 1024, 1, padding='same')
    return [d1, d2, d3, d4]
#### 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:22,代碼來源:graph.py

示例4: se_resnet_bottleneck

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def se_resnet_bottleneck(option, l, ch_out, stride, adl_index=None):
    shortcut = l
    l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
    l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))

    squeeze = GlobalAvgPooling('gap', l)
    squeeze = FullyConnected('fc1',
                             squeeze, ch_out // 4, activation=tf.nn.relu)
    squeeze = FullyConnected('fc2',
                             squeeze, ch_out * 4, activation=tf.nn.sigmoid)
    ch_ax = 1 if is_data_format_nchw() else 3
    shape = [-1, 1, 1, 1]
    shape[ch_ax] = ch_out * 4
    l = l * tf.reshape(squeeze, shape)

    out = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn())
    out = tf.nn.relu(out)

    if option.gating_position[adl_index]:
        out = gating_op(out, option)

    return out 
開發者ID:junsukchoe,項目名稱:ADL,代碼行數:25,代碼來源:resnet.py

示例5: se_bottleneck

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def se_bottleneck(l, ch_out, stride):
    shortcut = l
    l = Conv2D('conv1', l, ch_out, 1, activation=BNReLU)
    l = Conv2D('conv2', l, ch_out, 3, strides=stride, activation=BNReLU)
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_bn(zero_init=True))

    squeeze = GlobalAvgPooling('gap', l)
    squeeze = FullyConnected('fc1', squeeze, ch_out // 4, activation=tf.nn.relu)
    squeeze = FullyConnected('fc2', squeeze, ch_out * 4, activation=tf.nn.sigmoid)
    data_format = get_arg_scope()['Conv2D']['data_format']
    ch_ax = 1 if data_format in ['NCHW', 'channels_first'] else 3
    shape = [-1, 1, 1, 1]
    shape[ch_ax] = ch_out * 4
    l = l * tf.reshape(squeeze, shape)
    out = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_bn(zero_init=False))
    return tf.nn.relu(out) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:18,代碼來源:resnet_model.py

示例6: fastrcnn_Xconv1fc_head

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def fastrcnn_Xconv1fc_head(feature, num_convs, norm=None):
    """
    Args:
        feature (NCHW):
        num_classes(int): num_category + 1
        num_convs (int): number of conv layers
        norm (str or None): either None or 'GN'

    Returns:
        2D head feature
    """
    assert norm in [None, 'GN'], norm
    l = feature
    with argscope(Conv2D, data_format='channels_first',
                  kernel_initializer=tf.variance_scaling_initializer(
                      scale=2.0, mode='fan_out',
                      distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
        for k in range(num_convs):
            l = Conv2D('conv{}'.format(k), l, cfg.FPN.FRCNN_CONV_HEAD_DIM, 3, activation=tf.nn.relu)
            if norm is not None:
                l = GroupNorm('gn{}'.format(k), l)
        l = FullyConnected('fc', l, cfg.FPN.FRCNN_FC_HEAD_DIM,
                           kernel_initializer=tf.variance_scaling_initializer(), activation=tf.nn.relu)
    return l 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:26,代碼來源:model_frcnn.py

示例7: rpn_head

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def rpn_head(featuremap, channel, num_anchors):
    """
    Returns:
        label_logits: fHxfWxNA
        box_logits: fHxfWxNAx4
    """
    with argscope(Conv2D, data_format='channels_first',
                  kernel_initializer=tf.random_normal_initializer(stddev=0.01)):
        hidden = Conv2D('conv0', featuremap, channel, 3, activation=tf.nn.relu)

        label_logits = Conv2D('class', hidden, num_anchors, 1)
        box_logits = Conv2D('box', hidden, 4 * num_anchors, 1)
        # 1, NA(*4), im/16, im/16 (NCHW)

        label_logits = tf.transpose(label_logits, [0, 2, 3, 1])  # 1xfHxfWxNA
        label_logits = tf.squeeze(label_logits, 0)  # fHxfWxNA

        shp = tf.shape(box_logits)  # 1x(NAx4)xfHxfW
        box_logits = tf.transpose(box_logits, [0, 2, 3, 1])  # 1xfHxfWx(NAx4)
        box_logits = tf.reshape(box_logits, tf.stack([shp[2], shp[3], num_anchors, 4]))  # fHxfWxNAx4
    return label_logits, box_logits 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:23,代碼來源:model_rpn.py

示例8: resnet_bottleneck

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def resnet_bottleneck(l, ch_out, stride):
    shortcut = l
    if cfg.BACKBONE.STRIDE_1X1:
        if stride == 2:
            l = l[:, :, :-1, :-1]
        l = Conv2D('conv1', l, ch_out, 1, strides=stride)
        l = Conv2D('conv2', l, ch_out, 3, strides=1)
    else:
        l = Conv2D('conv1', l, ch_out, 1, strides=1)
        if stride == 2:
            l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
            l = Conv2D('conv2', l, ch_out, 3, strides=2, padding='VALID')
        else:
            l = Conv2D('conv2', l, ch_out, 3, strides=stride)
    if cfg.BACKBONE.NORM != 'None':
        l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_norm(zero_init=True))
    else:
        l = Conv2D('conv3', l, ch_out * 4, 1, activation=tf.identity,
                   kernel_initializer=tf.constant_initializer())
    ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_norm(zero_init=False))
    return tf.nn.relu(ret, name='output') 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:23,代碼來源:backbone.py

示例9: resnet_c4_backbone

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def resnet_c4_backbone(image, num_blocks):
    assert len(num_blocks) == 3
    freeze_at = cfg.BACKBONE.FREEZE_AT
    with backbone_scope(freeze=freeze_at > 0):
        l = tf.pad(image, [[0, 0], [0, 0], maybe_reverse_pad(2, 3), maybe_reverse_pad(2, 3)])
        l = Conv2D('conv0', l, 64, 7, strides=2, padding='VALID')
        l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
        l = MaxPooling('pool0', l, 3, strides=2, padding='VALID')

    with backbone_scope(freeze=freeze_at > 1):
        c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1)
    with backbone_scope(freeze=False):
        c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2)
        c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2)
    # 16x downsampling up to now
    return c4 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:18,代碼來源:backbone.py

示例10: GhostModule

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def GhostModule(name, x, filters, kernel_size, dw_size, ratio, padding='SAME', strides=1, data_format='NHWC', use_bias=False,
                activation=tf.identity):
    with tf.variable_scope(name):
        init_channels = math.ceil(filters / ratio)
        x = Conv2D('conv1', x, init_channels, kernel_size, strides=strides, activation=activation, data_format=data_format,
                   kernel_initializer=kernel_initializer, use_bias=use_bias)
        if ratio == 1:
            return x #activation(x, name='output')
        dw1 = MyDepthConv('dw1', x, [dw_size,dw_size], channel_mult=ratio-1, stride=1, data_format=data_format, activation=activation)
        dw1 = dw1[:,:,:,:filters-init_channels] if data_format=='NHWC' else dw1[:,:filters-init_channels,:,:]
        x = tf.concat([x, dw1], 3 if data_format=='NHWC' else 1)
        return x 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:14,代碼來源:myconv2d.py

示例11: SELayer

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def SELayer(x, out_dim, ratio):
    squeeze = utils.spatial_mean(x, keep_dims=True, scope='global_pool')
    excitation = Conv2D('fc1', squeeze, int(out_dim / ratio), 1, strides=1, kernel_initializer=kernel_initializer, 
                             data_format='NHWC', activation=None)
    excitation = tf.nn.relu(excitation, name='relu')
    excitation = Conv2D('fc2', excitation, out_dim, 1, strides=1, kernel_initializer=kernel_initializer, 
                             data_format='NHWC', activation=None)
    excitation = tf.clip_by_value(excitation, 0, 1, name='hsigmoid')
    scale = x * excitation
    return scale 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:12,代碼來源:myconv2d.py

示例12: decoder

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def decoder(name, i):
    pad = 'valid' # to prevent boundary artifacts
    with tf.variable_scope(name):
        with tf.variable_scope('u3'):
            u3 = upsample2x('rz', i[-1])
            u3_sum = tf.add_n([u3, i[-2]])

            u3 = Conv2D('conva', u3_sum, 256, 5, strides=1, padding=pad)   
            u3 = dense_blk('dense', u3, [128, 32], [1, 5], 8, split=4, padding=pad)
            u3 = Conv2D('convf', u3, 512, 1, strides=1)   
        ####
        with tf.variable_scope('u2'):          
            u2 = upsample2x('rz', u3)
            u2_sum = tf.add_n([u2, i[-3]])

            u2x = Conv2D('conva', u2_sum, 128, 5, strides=1, padding=pad)
            u2 = dense_blk('dense', u2x, [128, 32], [1, 5], 4, split=4, padding=pad)
            u2 = Conv2D('convf', u2, 256, 1, strides=1)   
        ####
        with tf.variable_scope('u1'):          
            u1 = upsample2x('rz', u2)
            u1_sum = tf.add_n([u1, i[-4]])

            u1 = Conv2D('conva', u1_sum, 64, 5, strides=1, padding='same')

    return [u3, u2x, u1]

#### 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:30,代碼來源:graph.py

示例13: conv_with_rn

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def conv_with_rn(gradient):
    out = Conv2D('conv', gradient, gradient.get_shape()[3], 1, strides=1, activation=get_rn(),
                 kernel_initializer=tf.contrib.layers.variance_scaling_initializer(2.0))
    gradient = gradient + out
    return gradient 
開發者ID:LiYingwei,項目名稱:Regional-Homogeneity,代碼行數:7,代碼來源:RHP_ops.py

示例14: is_data_format_nchw

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def is_data_format_nchw():
    data_format = get_arg_scope()['Conv2D']['data_format']
    return data_format in ['NCHW', 'channels_first'] 
開發者ID:junsukchoe,項目名稱:ADL,代碼行數:5,代碼來源:resnet.py

示例15: resnet

# 需要導入模塊: from tensorpack import models [as 別名]
# 或者: from tensorpack.models import Conv2D [as 別名]
def resnet(input_, option):
    mode = option.mode
    DEPTH = option.depth
    bottleneck = {'se': se_resnet_bottleneck}[mode]

    cfg = {
        50: ([3, 4, 6, 3], bottleneck),
    }
    defs, block_func = cfg[DEPTH]
    group_func = resnet_group

    with argscope(Conv2D, use_bias=False, kernel_initializer= \
            tf.variance_scaling_initializer(scale=2.0, mode='fan_out')), \
         argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm],
                  data_format='channels_first'):

        l = Conv2D('conv0', input_, 64, 7, strides=2, activation=BNReLU)
        if option.gating_position[0]: l = gating_op(l, option)

        l = MaxPooling('pool0', l, 3, strides=2, padding='SAME')
        if option.gating_position[1]: l = gating_op(l, option)

        l = group_func('group0', l, block_func, 64, defs[0], 1, option)
        if option.gating_position[2]: l = gating_op(l, option)

        l = group_func('group1', l, block_func, 128, defs[1], 2, option)
        if option.gating_position[3]: l = gating_op(l, option)

        l = group_func('group2', l, block_func, 256, defs[2], 2, option)
        if option.gating_position[4]: l = gating_op(l, option)

        l = group_func('group3', l, block_func, 512, defs[3],
                       1, option)
        if option.gating_position[5]: l = gating_op(l, option)

        p_logits = GlobalAvgPooling('gap', l)
        logits = FullyConnected('linearnew', p_logits, option.number_of_class)

    return logits, l 
開發者ID:junsukchoe,項目名稱:ADL,代碼行數:41,代碼來源:resnet.py


注:本文中的tensorpack.models.Conv2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。