當前位置: 首頁>>代碼示例>>Python>>正文


Python logger.info方法代碼示例

本文整理匯總了Python中tensorpack.logger.info方法的典型用法代碼示例。如果您正苦於以下問題:Python logger.info方法的具體用法?Python logger.info怎麽用?Python logger.info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.logger的用法示例。


在下文中一共展示了logger.info方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _update_heirarchical

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _update_heirarchical(self):
        self.action_angle_step = int(self.action_angle_step/2)
        self.action_dist_step = self.action_dist_step-1
        if (self.spacing[0] > 1): self.spacing -= 1
        self._groundTruth_plane = Plane(*getACPCPlaneFromLandmarks(
                                        self.sitk_image,
                                        self._origin3d_point.astype('float'),
                                        self.ac_point, self.pc_point,
                                        self.midsag_point,
                                        self._plane_size, self.spacing))
        # self._groundTruth_plane = Plane(*getMidSagPlaneFromLandmarks(
        #                                 self.sitk_image,
        #                                 self._origin3d_point.astype('float'),
        #                                 self.ac_point, self.pc_point,
        #                                 self.midsag_point,
        #                                 self._plane_size, self.spacing))
        # logger.info('update hierarchical - spacing = {} - angle step = {} - dist step = {}'.format(self.spacing,self.action_angle_step,self.action_dist_step)) 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:19,代碼來源:detectPlanePlayerBrain.py

示例2: _update_history

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _update_history(self):
        ''' update history buffer with current state
        '''
        # update location history
        self._loc_history[:-1] = self._loc_history[1:]
        # loc = self._plane.origin
        loc = self._plane.params
        # logger.info('loc {}'.format(loc))
        self._loc_history[-1] = (np.around(loc[0],decimals=2),
                                 np.around(loc[1],decimals=2),
                                 np.around(loc[2],decimals=2),
                                 np.around(loc[3],decimals=2))
        # update distance history
        self._dist_history.append(self.cur_dist)
        self._dist_history_params.append(self.cur_dist_params)
        # update params history
        self._plane_history.append(self._plane)
        self._bestq_history.append(np.max(self._qvalues))
        # update q-value history
        self._qvalues_history[:-1] = self._qvalues_history[1:]
        self._qvalues_history[-1] = self._qvalues 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:23,代碼來源:detectPlanePlayerBrain.py

示例3: _update_history

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _update_history(self):
        ''' update history buffer with current state
        '''
        # update location history
        self._loc_history[:-1] = self._loc_history[1:]
        loc = self._plane.origin
        loc = self._plane.params
        # logger.info('loc {}'.format(loc))
        self._loc_history[-1] = (np.around(loc[0],decimals=2),
                                 np.around(loc[1],decimals=2),
                                 np.around(loc[2],decimals=2),
                                 np.around(loc[3],decimals=2))
        # update distance history
        self._dist_history.append(self.cur_dist)
        self._dist_history_params.append(self.cur_dist_params)
        # update params history
        self._plane_history.append(self._plane)
        self._bestq_history.append(np.max(self._qvalues))
        # update q-value history
        self._qvalues_history[:-1] = self._qvalues_history[1:]
        self._qvalues_history[-1] = self._qvalues 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:23,代碼來源:detectPlanePlayerCardio.py

示例4: _oscillate

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _oscillate(self):
        ''' Return True if the agent is stuck and oscillating
        '''
        counter = Counter(self._loc_history)
        freq = counter.most_common()
        # return false is history is empty (begining of the game)
        if len(freq) < 2: return False
        # check frequency
        if freq[0][0] == (0,0,0,0):
            if (freq[1][1]>2):
                # logger.info('oscillating {}'.format(self._loc_history))
                return True
            else:
                return False
        elif (freq[0][1]>2):
            # logger.info('oscillating {}'.format(self._loc_history))
            return True 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:19,代碼來源:detectPlanePlayerCardio.py

示例5: guess_inputs

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def guess_inputs(input_dir):
    meta_candidates = []
    model_candidates = []
    for path in os.listdir(input_dir):
        if path.startswith('graph-') and path.endswith('.meta'):
            meta_candidates.append(path)
        if path.startswith('model-') and path.endswith('.index'):
            modelid = int(path[len('model-'):-len('.index')])
            model_candidates.append((path, modelid))
    assert len(meta_candidates)
    meta = sorted(meta_candidates)[-1]
    if len(meta_candidates) > 1:
        logger.info("Choosing {} from {} as graph file.".format(meta, meta_candidates))
    else:
        logger.info("Choosing {} as graph file.".format(meta))

    assert len(model_candidates)
    model = sorted(model_candidates, key=lambda x: x[1])[-1][0]
    if len(model_candidates) > 1:
        logger.info("Choosing {} from {} as model file.".format(model, [x[0] for x in model_candidates]))
    else:
        logger.info("Choosing {} as model file.".format(model))
    return os.path.join(input_dir, model), os.path.join(input_dir, meta) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:25,代碼來源:dump-model-params.py

示例6: get_config

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def get_config(model, fake=False, data_aug=True):
    nr_tower = max(get_nr_gpu(), 1)
    batch = TOTAL_BATCH_SIZE // nr_tower

    if fake:
        logger.info("For benchmark, batch size is fixed to 64 per tower.")
        dataset_train = FakeData(
            [[64, 224, 224, 3], [64]], 1000, random=False, dtype='uint8')
        callbacks = []
    else:
        logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch))
        dataset_train = get_data('train', batch, data_aug)
        dataset_val = get_data('val', batch, data_aug)
        callbacks = [
            ModelSaver(),
        ]
        if data_aug:
            callbacks.append(ScheduledHyperParamSetter('learning_rate',
                                                       [(30, 1e-2), (60, 1e-3), (85, 1e-4), (95, 1e-5), (105, 1e-6)]))
        callbacks.append(HumanHyperParamSetter('learning_rate'))
        infs = [ClassificationError('wrong-top1', 'val-error-top1'),
                ClassificationError('wrong-top5', 'val-error-top5')]
        if nr_tower == 1:
            # single-GPU inference with queue prefetch
            callbacks.append(InferenceRunner(QueueInput(dataset_val), infs))
        else:
            # multi-GPU inference (with mandatory queue prefetch)
            callbacks.append(DataParallelInferenceRunner(
                dataset_val, infs, list(range(nr_tower))))

    return AutoResumeTrainConfig(
        model=model,
        dataflow=dataset_train,
        callbacks=callbacks,
        steps_per_epoch=5000 if TOTAL_BATCH_SIZE == 256 else 10000,
        max_epoch=110 if data_aug else 64,
        nr_tower=nr_tower
    ) 
開發者ID:microsoft,項目名稱:LQ-Nets,代碼行數:40,代碼來源:imagenet.py

示例7: step

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def step(self, action, q_values):
        ob, reward, done, info = self.env.step(action, q_values)
        self.frames.append(ob)
        return self._observation(), reward, done, info 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:6,代碼來源:medical.py

示例8: decode

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def decode(self, filename, label=False):
        """ decode a single nifti image
        Args
          filename: string for input images
          label: True if nifti image is label
        Returns
          image: an image container with attributes; name, data, dims
        """
        image = ImageRecord()
        image.name = filename
        assert self._is_nifti(image.name), "unknown image format for %r" % image.name

        if label:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkInt8)
        else:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkFloat32)
            np_image = sitk.GetArrayFromImage(sitk_image)
            # threshold image between p10 and p98 then re-scale [0-255]
            p0 = np_image.min().astype('float')
            p10 = np.percentile(np_image, 10)
            p99 = np.percentile(np_image, 99)
            p100 = np_image.max().astype('float')
            # logger.info('p0 {} , p5 {} , p10 {} , p90 {} , p98 {} , p100 {}'.format(p0,p5,p10,p90,p98,p100))
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p10,
                                        upper=p100,
                                        outsideValue=p10)
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p0,
                                        upper=p99,
                                        outsideValue=p99)
            sitk_image = sitk.RescaleIntensity(sitk_image,
                                               outputMinimum=0,
                                               outputMaximum=255)

        # Convert from [depth, width, height] to [width, height, depth]
        image.data = sitk.GetArrayFromImage(sitk_image).transpose(2, 1, 0) #.astype('uint8')
        image.dims = np.shape(image.data)

        return sitk_image, image 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:42,代碼來源:dataReader.py

示例9: _calc_reward_params

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _calc_reward_params(self, prev_params, next_params):
        ''' Calculate the new reward based on the euclidean distance to the target plane
        '''
        # logger.info('prev_params {}'.format(np.around(prev_params,2)))
        # logger.info('next_params {}'.format(np.around(next_params,2)))
        prev_dist = calcScaledDistTwoParams(self._groundTruth_plane.params,
                                      prev_params,
                                      scale_angle = self.action_angle_step,
                                      scale_dist = self.action_dist_step)
        next_dist = calcScaledDistTwoParams(self._groundTruth_plane.params,
                                      next_params,
                                      scale_angle = self.action_angle_step,
                                      scale_dist = self.action_dist_step)
        # logger.info('next_dist {} prev_dist {}'.format(next_dist, prev_dist))
        return prev_dist - next_dist 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:17,代碼來源:detectPlanePlayerBrain.py

示例10: step

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def step(self, action, qvalues):
        ob, reward, done, info = self.env.step(action,qvalues)
        self.frames.append(ob)
        return self._observation(), reward, done, info 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:6,代碼來源:detectPlanePlayerBrain.py

示例11: _calc_reward_params

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _calc_reward_params(self, prev_params, next_params):
        ''' Calculate the new reward based on the euclidean distance to the target plane
        '''
        # logger.info('prev_params {}'.format(np.around(prev_params,2)))
        # logger.info('next_params {}'.format(np.around(next_params,2)))
        prev_dist = calcScaledDistTwoParams(self._groundTruth_plane.params,
                                      prev_params,
                                      scale_angle = self.action_angle_step,
                                      scale_dist = self.action_dist_step)
        next_dist = calcScaledDistTwoParams(self._groundTruth_plane.params,
                                      next_params,
                                      scale_angle = self.action_angle_step,
                                      scale_dist = self.action_dist_step)

        return prev_dist - next_dist 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:17,代碼來源:detectPlanePlayerCardio.py

示例12: decode

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def decode(self, filename,label=False):
        """ decode a single nifti image
        Args
          filename: string for input images
          label: True if nifti image is label
        Returns
          image: an image container with attributes; name, data, dims
        """
        image = ImageRecord()
        image.name = filename
        assert self._is_nifti(image.name), "unknown image format for %r" % image.name

        if label:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkInt8)
        else:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkFloat32)
            np_image = sitk.GetArrayFromImage(sitk_image)
            # threshold image between p10 and p98 then re-scale [0-255]
            p0 = np_image.min().astype('float')
            p10 = np.percentile(np_image,10)
            p99 = np.percentile(np_image,99)
            p100 = np_image.max().astype('float')
            # logger.info('p0 {} , p5 {} , p10 {} , p90 {} , p98 {} , p100 {}'.format(p0,p5,p10,p90,p98,p100))
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p10,
                                        upper=p100,
                                        outsideValue=p10)
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p0,
                                        upper=p99,
                                        outsideValue=p99)
            sitk_image = sitk.RescaleIntensity(sitk_image,
                                               outputMinimum=0,
                                               outputMaximum=255)

        # Convert from [depth, width, height] to [width, height, depth]
        # stupid simpleitk
        image.data = sitk.GetArrayFromImage(sitk_image).transpose(2,1,0)#.astype('uint8')
        image.dims = np.shape(image.data)

        return sitk_image, image 
開發者ID:amiralansary,項目名稱:rl-medical,代碼行數:43,代碼來源:sampleTrain.py

示例13: _import_external_ops

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def _import_external_ops(message):
    if "horovod" in message.lower():
        logger.info("Importing horovod ...")
        import horovod.tensorflow  # noqa
        return
    if "MaxBytesInUse" in message:
        logger.info("Importing memory_stats ...")
        from tensorflow.contrib.memory_stats import MaxBytesInUse  # noqa
        return
    if 'Nccl' in message:
        logger.info("Importing nccl ...")
        if TF_version <= (1, 12):
            try:
                from tensorflow.contrib.nccl.python.ops.nccl_ops import _validate_and_load_nccl_so
            except Exception:
                pass
            else:
                _validate_and_load_nccl_so()
            from tensorflow.contrib.nccl.ops import gen_nccl_ops  # noqa
        else:
            from tensorflow.python.ops import gen_nccl_ops  # noqa
        return
    if 'ZMQConnection' in message:
        import zmq_ops  # noqa
        return
    logger.error("Unhandled error: " + message) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:28,代碼來源:dump-model-params.py

示例14: step

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def step(self, act, q_values,isOver):
        for i in range(0,self.agents):
            if isOver[i]: act[i]=15
        current_st, reward, terminal, info = self.env.step(act, q_values, isOver)
        # for i in range(0,self.agents):
        current_st=tuple(current_st)
        self.frames.append(current_st)
        return self._observation(),reward, terminal, info 
開發者ID:thanosvlo,項目名稱:MARL-for-Anatomical-Landmark-Detection,代碼行數:10,代碼來源:medical.py

示例15: decode

# 需要導入模塊: from tensorpack import logger [as 別名]
# 或者: from tensorpack.logger import info [as 別名]
def decode(self, filename,label=False):
        """ decode a single nifti image
        Args
          filename: string for input images
          label: True if nifti image is label
        Returns
          image: an image container with attributes; name, data, dims
        """
        image = ImageRecord()
        image.name = filename
        assert self._is_nifti(image.name), "unknown image format for %r" % image.name

        if label:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkInt8)
        else:
            sitk_image = sitk.ReadImage(image.name, sitk.sitkFloat32)
            np_image = sitk.GetArrayFromImage(sitk_image)
            # threshold image between p10 and p98 then re-scale [0-255]
            p0 = np_image.min().astype('float')
            p10 = np.percentile(np_image,10)
            p99 = np.percentile(np_image,99)
            p100 = np_image.max().astype('float')
            # logger.info('p0 {} , p5 {} , p10 {} , p90 {} , p98 {} , p100 {}'.format(p0,p5,p10,p90,p98,p100))
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p10,
                                        upper=p100,
                                        outsideValue=p10)
            sitk_image = sitk.Threshold(sitk_image,
                                        lower=p0,
                                        upper=p99,
                                        outsideValue=p99)
            sitk_image = sitk.RescaleIntensity(sitk_image,
                                               outputMinimum=0,
                                               outputMaximum=255)

        # Convert from [depth, width, height] to [width, height, depth]
        image.data = sitk.GetArrayFromImage(sitk_image).transpose(2,1,0)#.astype('uint8')
        image.dims = np.shape(image.data)

        return sitk_image, image 
開發者ID:thanosvlo,項目名稱:MARL-for-Anatomical-Landmark-Detection,代碼行數:42,代碼來源:dataReader.py


注:本文中的tensorpack.logger.info方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。