當前位置: 首頁>>代碼示例>>Python>>正文


Python imgaug.Saturation方法代碼示例

本文整理匯總了Python中tensorpack.imgaug.Saturation方法的典型用法代碼示例。如果您正苦於以下問題:Python imgaug.Saturation方法的具體用法?Python imgaug.Saturation怎麽用?Python imgaug.Saturation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.imgaug的用法示例。


在下文中一共展示了imgaug.Saturation方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_augmentations

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def sample_augmentations():
    ds = CocoPose('/data/public/rw/coco-pose-estimation-lmdb/', is_train=False, only_idx=0)
    ds = MapDataComponent(ds, pose_random_scale)
    ds = MapDataComponent(ds, pose_rotation)
    ds = MapDataComponent(ds, pose_flip)
    ds = MapDataComponent(ds, pose_resize_shortestedge_random)
    ds = MapDataComponent(ds, pose_crop_random)
    ds = MapData(ds, pose_to_img)
    augs = [
        imgaug.RandomApplyAug(imgaug.RandomChooseAug([
            imgaug.GaussianBlur(3),
            imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01),
            imgaug.RandomOrderAug([
                imgaug.BrightnessScale((0.8, 1.2), clip=False),
                imgaug.Contrast((0.8, 1.2), clip=False),
                # imgaug.Saturation(0.4, rgb=True),
            ]),
        ]), 0.7),
    ]
    ds = AugmentImageComponent(ds, augs)

    ds.reset_state()
    for l1, l2, l3 in ds.get_data():
        CocoPose.display_image(l1, l2, l3) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:26,代碼來源:pose_stats.py

示例2: fbresnet_augmentor

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:34,代碼來源:imagenet_utils.py

示例3: fbresnet_augmentor

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    interpolation = cv2.INTER_LINEAR
    if isTrain:
        """
        Sec 5.1:
        We use scale and aspect ratio data augmentation [35] as
        in [12]. The network input image is a 224×224 pixel random
        crop from an augmented image or its horizontal flip.
        """
        augmentors = [
            imgaug.GoogleNetRandomCropAndResize(interp=interpolation),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), rgb=False, clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, interp=interpolation),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:41,代碼來源:imagenet_utils.py

示例4: get_ilsvrc_data_alexnet

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def get_ilsvrc_data_alexnet(is_train, image_size, batchsize, directory):
    if is_train:
        if not directory.startswith('/'):
            ds = ILSVRCTTenthTrain(directory)
        else:
            ds = ILSVRC12(directory, 'train')
        augs = [
            imgaug.RandomApplyAug(imgaug.RandomResize((0.9, 1.2), (0.9, 1.2)), 0.7),
            imgaug.RandomApplyAug(imgaug.RotationAndCropValid(15), 0.7),
            imgaug.RandomApplyAug(imgaug.RandomChooseAug([
                imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01),
                imgaug.RandomOrderAug([
                    imgaug.BrightnessScale((0.8, 1.2), clip=False),
                    imgaug.Contrast((0.8, 1.2), clip=False),
                    # imgaug.Saturation(0.4, rgb=True),
                ]),
            ]), 0.7),
            imgaug.Flip(horiz=True),

            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.RandomCrop((224, 224)),
        ]
        ds = AugmentImageComponent(ds, augs)
        ds = PrefetchData(ds, 1000, multiprocessing.cpu_count())
        ds = BatchData(ds, batchsize)
        ds = PrefetchData(ds, 10, 4)
    else:
        if not directory.startswith('/'):
            ds = ILSVRCTenthValid(directory)
        else:
            ds = ILSVRC12(directory, 'val')
        ds = AugmentImageComponent(ds, [
            imgaug.ResizeShortestEdge(224, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ])
        ds = PrefetchData(ds, 100, multiprocessing.cpu_count())
        ds = BatchData(ds, batchsize)

    return ds 
開發者ID:ildoonet,項目名稱:tf-lcnn,代碼行數:41,代碼來源:data_feeder.py

示例5: fbresnet_augmentor

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
開發者ID:qinenergy,項目名稱:webvision-2.0-benchmarks,代碼行數:31,代碼來源:imagenet_utils.py

示例6: fbresnet_augmentor

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            # It's OK to remove the following augs if your CPU is not fast enough.
            # Removing brightness/contrast/saturation does not have a significant effect on accuracy.
            # Removing lighting leads to a tiny drop in accuracy.
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((DEFAULT_IMAGE_SHAPE, DEFAULT_IMAGE_SHAPE)),
        ]
    return augmentors 
開發者ID:microsoft,項目名稱:LQ-Nets,代碼行數:34,代碼來源:imagenet_utils.py

示例7: fbresnet_augmentor

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def fbresnet_augmentor(isTrain):
    """
    Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
    """
    if isTrain:
        augmentors = [
            GoogleNetResize(),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors
#####################################################################################################
##################################################################################################### 
開發者ID:BayesWatch,項目名稱:sequential-imagenet-dataloader,代碼行數:33,代碼來源:data.py

示例8: get_augmentations

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def get_augmentations(is_train):
    if is_train:
        augmentors = [
            GoogleNetResize(crop_area_fraction=0.76, target_shape=224),     # TODO : 76% or 49%?
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=True),
                 imgaug.Contrast((0.6, 1.4), clip=True),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return augmentors 
開發者ID:ildoonet,項目名稱:tf-mobilenet-v2,代碼行數:28,代碼來源:data_helper.py

示例9: get_train_augmentors

# 需要導入模塊: from tensorpack import imgaug [as 別名]
# 或者: from tensorpack.imgaug import Saturation [as 別名]
def get_train_augmentors(self, input_shape, output_shape, view=False):
        print(input_shape, output_shape)
        shape_augs = [
            imgaug.Affine(
                        shear=5, # in degree
                        scale=(0.8, 1.2),
                        rotate_max_deg=179,
                        translate_frac=(0.01, 0.01),
                        interp=cv2.INTER_NEAREST,
                        border=cv2.BORDER_CONSTANT),
            imgaug.Flip(vert=True),
            imgaug.Flip(horiz=True),
            imgaug.CenterCrop(input_shape),
        ]

        input_augs = [
            imgaug.RandomApplyAug(
                imgaug.RandomChooseAug(
                    [
                    GaussianBlur(),
                    MedianBlur(),
                    imgaug.GaussianNoise(),
                    ]
                ), 0.5),
            # standard color augmentation
            imgaug.RandomOrderAug(
                [imgaug.Hue((-8, 8), rgb=True), 
                imgaug.Saturation(0.2, rgb=True),
                imgaug.Brightness(26, clip=True),  
                imgaug.Contrast((0.75, 1.25), clip=True),
                ]),
            imgaug.ToUint8(),
        ]

        label_augs = []
        if self.model_type == 'unet' or self.model_type == 'micronet':
            label_augs =[GenInstanceUnetMap(crop_shape=output_shape)]
        if self.model_type == 'dcan':
            label_augs =[GenInstanceContourMap(crop_shape=output_shape)]
        if self.model_type == 'dist':
            label_augs = [GenInstanceDistance(crop_shape=output_shape, inst_norm=False)]
        if self.model_type == 'np_hv':
            label_augs = [GenInstanceHV(crop_shape=output_shape)]
        if self.model_type == 'np_dist':
            label_augs = [GenInstanceDistance(crop_shape=output_shape, inst_norm=True)]

        if not self.type_classification:            
            label_augs.append(BinarizeLabel())

        if not view:
            label_augs.append(imgaug.CenterCrop(output_shape))        

        return shape_augs, input_augs, label_augs 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:55,代碼來源:config.py


注:本文中的tensorpack.imgaug.Saturation方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。