當前位置: 首頁>>代碼示例>>Python>>正文


Python imgaug.Flip方法代碼示例

本文整理匯總了Python中tensorpack.dataflow.imgaug.Flip方法的典型用法代碼示例。如果您正苦於以下問題:Python imgaug.Flip方法的具體用法?Python imgaug.Flip怎麽用?Python imgaug.Flip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.dataflow.imgaug的用法示例。


在下文中一共展示了imgaug.Flip方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_data(name, batch):
    isTrain = name == 'train'
    image_shape = 224

    if isTrain:
        augmentors = [
            # use lighter augs if model is too small
            GoogleNetResize(crop_area_fraction=0.49 if args.width_ratio < 1 else 0.08,
                           target_shape=image_shape),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                ]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(int(image_shape*256/224), cv2.INTER_CUBIC),
            imgaug.CenterCrop((image_shape, image_shape)),
        ]
    return get_imagenet_dataflow(args.data_dir, name, batch, augmentors, 
                       meta_dir = args.meta_dir) 
開發者ID:huawei-noah,項目名稱:ghostnet,代碼行數:25,代碼來源:main.py

示例2: fbresnet_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def fbresnet_augmentor():
    # assme BGR input
    augmentors = [
        imgaug.GoogleNetRandomCropAndResize(),
        imgaug.RandomOrderAug(
            [imgaug.BrightnessScale((0.6, 1.4), clip=False),
             imgaug.Contrast((0.6, 1.4), clip=False),
             imgaug.Saturation(0.4, rgb=False),
             # rgb->bgr conversion for the constants copied from fb.resnet.torch
             imgaug.Lighting(0.1,
                             eigval=np.asarray(
                                 [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                             eigvec=np.array(
                                 [[-0.5675, 0.7192, 0.4009],
                                  [-0.5808, -0.0045, -0.8140],
                                  [-0.5836, -0.6948, 0.4203]],
                                 dtype='float32')[::-1, ::-1]
                             )]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:23,代碼來源:augmentors.py

示例3: fbresnet_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def fbresnet_augmentor():
    # assme BGR input
    augmentors = [
        GoogleNetResize(),
        imgaug.RandomOrderAug(
            [imgaug.BrightnessScale((0.6, 1.4), clip=False),
             imgaug.Contrast((0.6, 1.4), clip=False),
             imgaug.Saturation(0.4, rgb=False),
             # rgb->bgr conversion for the constants copied from fb.resnet.torch
             imgaug.Lighting(0.1,
                             eigval=np.asarray(
                                 [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                             eigvec=np.array(
                                 [[-0.5675, 0.7192, 0.4009],
                                  [-0.5808, -0.0045, -0.8140],
                                  [-0.5836, -0.6948, 0.4203]],
                                 dtype='float32')[::-1, ::-1]
                             )]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:qinenergy,項目名稱:adanet,代碼行數:23,代碼來源:augmentors.py

示例4: get_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_data(name, batch):
    isTrain = name == 'train'
    if isTrain:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.RandomCrop(224),
            imgaug.Lighting(0.1,
                            eigval=np.asarray(
                                [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                            eigvec=np.array(
                                [[-0.5675, 0.7192, 0.4009],
                                 [-0.5808, -0.0045, -0.8140],
                                 [-0.5836, -0.6948, 0.4203]],
                                dtype='float32')[::-1, ::-1]),
            imgaug.Flip(horiz=True)]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224))]
    return get_imagenet_dataflow(args.data, name, batch, augmentors) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:22,代碼來源:alexnet.py

示例5: resizeAndLighting_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def resizeAndLighting_augmentor():
    # assme BGR input
    augmentors = [
        imgaug.GoogleNetRandomCropAndResize(),
        imgaug.Lighting(0.1,
                        eigval=np.asarray(
                            [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                        eigvec=np.array(
                            [[-0.5675, 0.7192, 0.4009],
                             [-0.5808, -0.0045, -0.8140],
                             [-0.5836, -0.6948, 0.4203]],
                            dtype='float32')[::-1, ::-1]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:17,代碼來源:augmentors.py

示例6: resizeOnly_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def resizeOnly_augmentor():
    # assme BGR input
    augmentors = [
        imgaug.GoogleNetRandomCropAndResize(),
        imgaug.Lighting(0.1,
                        eigval=np.asarray(
                            [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                        eigvec=np.array(
                            [[-0.5675, 0.7192, 0.4009],
                             [-0.5808, -0.0045, -0.8140],
                             [-0.5836, -0.6948, 0.4203]],
                            dtype='float32')[::-1, ::-1]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:17,代碼來源:augmentors.py

示例7: get_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_data(is_train,
             batch_size,
             data_dir_path,
             input_image_size=224,
             resize_inv_factor=0.875):
    assert (resize_inv_factor > 0.0)
    resize_value = int(math.ceil(float(input_image_size) / resize_inv_factor))

    if is_train:
        augmentors = [
            GoogleNetResize(
                crop_area_fraction=0.08,
                target_shape=input_image_size),
            imgaug.RandomOrderAug([
                imgaug.BrightnessScale((0.6, 1.4), clip=False),
                imgaug.Contrast((0.6, 1.4), clip=False),
                imgaug.Saturation(0.4, rgb=False),
                # rgb-bgr conversion for the constants copied from fb.resnet.torch
                imgaug.Lighting(
                    0.1,
                    eigval=np.asarray([0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                    eigvec=np.array([
                        [-0.5675, 0.7192, 0.4009],
                        [-0.5808, -0.0045, -0.8140],
                        [-0.5836, -0.6948, 0.4203]], dtype="float32")[::-1, ::-1])]),
            imgaug.Flip(horiz=True)]
    else:
        augmentors = [
            # imgaug.ResizeShortestEdge(resize_value, cv2.INTER_CUBIC),
            imgaug.ResizeShortestEdge(resize_value, cv2.INTER_LINEAR),
            imgaug.CenterCrop((input_image_size, input_image_size))
        ]

    return get_imagenet_dataflow(
        datadir=data_dir_path,
        is_train=is_train,
        batch_size=batch_size,
        augmentors=augmentors) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:40,代碼來源:utils_tp.py

示例8: get_cifar_augmented_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_cifar_augmented_data(
        subset, options, do_multiprocess=True, do_validation=False, shuffle=None):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain
    if options.num_classes == 10 and options.ds_name == 'cifar10':
        ds = dataset.Cifar10(subset, shuffle=shuffle, do_validation=do_validation)
        cutout_length = 16
        n_holes=1
    elif options.num_classes == 100 and options.ds_name == 'cifar100':
        ds = dataset.Cifar100(subset, shuffle=shuffle, do_validation=do_validation)
        cutout_length = 8
        n_holes=1
    else:
        raise ValueError('Number of classes must be set to 10(default) or 100 for CIFAR')
    logger.info('{} set has n_samples: {}'.format(subset, len(ds.data)))
    pp_mean = ds.get_per_pixel_mean()
    if isTrain:
        logger.info('Will do cut-out with length={} n_holes={}'.format(
            cutout_length, n_holes
        ))
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0),
            Cutout(length=cutout_length, n_holes=n_holes),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 3, 2)
    return ds 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:38,代碼來源:cifar.py

示例9: get_downsampled_imagenet_augmented_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_downsampled_imagenet_augmented_data(subset, options,
        do_multiprocess=True, do_validation=False, shuffle=None):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain

    reret = re.search(r'^imagenet([0-9]*)$', options.ds_name)
    input_size = int(reret.group(1))

    ds = DownsampledImageNet(_data_batch_dir(options.data_dir, input_size),\
         subset, shuffle, input_size, do_validation=do_validation)

    pp_mean = ds.mean_img
    paste_size = ds.input_size * 5 // 4
    crop_size = ds.input_size
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((paste_size, paste_size)),
            imgaug.RandomCrop((crop_size, crop_size)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 4, 2)
    return ds 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:32,代碼來源:downsampled_imagenet.py

示例10: resizeAndLighting_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def resizeAndLighting_augmentor():
    # assme BGR input
    augmentors = [
        GoogleNetResize(),
        imgaug.Lighting(0.1,
                        eigval=np.asarray(
                            [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                        eigvec=np.array(
                            [[-0.5675, 0.7192, 0.4009],
                             [-0.5808, -0.0045, -0.8140],
                             [-0.5836, -0.6948, 0.4203]],
                            dtype='float32')[::-1, ::-1]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:qinenergy,項目名稱:adanet,代碼行數:17,代碼來源:augmentors.py

示例11: resizeOnly_augmentor

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def resizeOnly_augmentor():
    # assme BGR input
    augmentors = [
        GoogleNetResize(),
        imgaug.Lighting(0.1,
                        eigval=np.asarray(
                            [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                        eigvec=np.array(
                            [[-0.5675, 0.7192, 0.4009],
                             [-0.5808, -0.0045, -0.8140],
                             [-0.5836, -0.6948, 0.4203]],
                            dtype='float32')[::-1, ::-1]),
        imgaug.Flip(horiz=True),
    ]
    return augmentors 
開發者ID:qinenergy,項目名稱:adanet,代碼行數:17,代碼來源:augmentors.py

示例12: get_data

# 需要導入模塊: from tensorpack.dataflow import imgaug [as 別名]
# 或者: from tensorpack.dataflow.imgaug import Flip [as 別名]
def get_data(name, batch):
    isTrain = name == 'train'

    if isTrain:
        augmentors = [
            # use lighter augs if model is too small
            imgaug.GoogleNetRandomCropAndResize(crop_area_fraction=(0.49 if args.ratio < 1 else 0.08, 1.)),
            imgaug.RandomOrderAug(
                [imgaug.BrightnessScale((0.6, 1.4), clip=False),
                 imgaug.Contrast((0.6, 1.4), clip=False),
                 imgaug.Saturation(0.4, rgb=False),
                 # rgb-bgr conversion for the constants copied from fb.resnet.torch
                 imgaug.Lighting(0.1,
                                 eigval=np.asarray(
                                     [0.2175, 0.0188, 0.0045][::-1]) * 255.0,
                                 eigvec=np.array(
                                     [[-0.5675, 0.7192, 0.4009],
                                      [-0.5808, -0.0045, -0.8140],
                                      [-0.5836, -0.6948, 0.4203]],
                                     dtype='float32')[::-1, ::-1]
                                 )]),
            imgaug.Flip(horiz=True),
        ]
    else:
        augmentors = [
            imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
            imgaug.CenterCrop((224, 224)),
        ]
    return get_imagenet_dataflow(
        args.data, name, batch, augmentors) 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:32,代碼來源:shufflenet.py


注:本文中的tensorpack.dataflow.imgaug.Flip方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。