當前位置: 首頁>>代碼示例>>Python>>正文


Python dataset.Cifar10方法代碼示例

本文整理匯總了Python中tensorpack.dataflow.dataset.Cifar10方法的典型用法代碼示例。如果您正苦於以下問題:Python dataset.Cifar10方法的具體用法?Python dataset.Cifar10怎麽用?Python dataset.Cifar10使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorpack.dataflow.dataset的用法示例。


在下文中一共展示了dataset.Cifar10方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test):
    isTrain = train_or_test == 'train'
    ds = dataset.Cifar10(train_or_test)
    pp_mean = ds.get_per_pixel_mean()
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: x - pp_mean),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: x - pp_mean)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
    if isTrain:
        ds = PrefetchData(ds, 3, 2)
    return ds 
開發者ID:microsoft,項目名稱:LQ-Nets,代碼行數:22,代碼來源:cifar10-vgg-small.py

示例2: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test):
    isTrain = train_or_test == 'train'
    ds = dataset.Cifar10(train_or_test)
    pp_mean = ds.get_per_pixel_mean()
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: x - pp_mean),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: x - pp_mean)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
    if isTrain:
        ds = MultiProcessRunner(ds, 3, 2)
    return ds 
開發者ID:ppwwyyxx,項目名稱:GroupNorm-reproduce,代碼行數:22,代碼來源:cifar10-resnet-gn.py

示例3: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test):
    isTrain = train_or_test == 'train'
    ds = dataset.Cifar10(train_or_test)
    pp_mean = ds.get_per_pixel_mean(('train',))
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: x - pp_mean),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: x - pp_mean)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
    if isTrain:
        ds = MultiProcessRunner(ds, 3, 2)
    return ds 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:22,代碼來源:cifar10-resnet.py

示例4: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test, cifar_classnum):
    isTrain = train_or_test == 'train'
    if cifar_classnum == 10:
        ds = dataset.Cifar10(train_or_test)
    else:
        ds = dataset.Cifar100(train_or_test)
    if isTrain:
        augmentors = [
            imgaug.RandomCrop((30, 30)),
            imgaug.Flip(horiz=True),
            imgaug.Brightness(63),
            imgaug.Contrast((0.2, 1.8)),
            imgaug.MeanVarianceNormalize(all_channel=True)
        ]
    else:
        augmentors = [
            imgaug.CenterCrop((30, 30)),
            imgaug.MeanVarianceNormalize(all_channel=True)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, 128, remainder=not isTrain)
    if isTrain:
        ds = MultiProcessRunnerZMQ(ds, 5)
    return ds 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:26,代碼來源:cifar-convnet.py

示例5: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test):
    isTrain = train_or_test == 'train'
    ds = dataset.Cifar10(train_or_test)

    cifar10_mean = np.asarray([0.4914, 0.4822, 0.4465], dtype="float32") * 255.
    cifar10_invstd = 1.0 / (np.asarray([0.2471, 0.2435, 0.2616], dtype="float32") * 255)

    if isTrain:
        augmentors = imgaug.AugmentorList([
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.RandomCutout(8, 8),
        ])

    def mapf(dp):
        img, label = dp
        img = (img.astype("float32") - cifar10_mean) * cifar10_invstd

        if isTrain:
            img = np.pad(img, [(4, 4), (4, 4), (0, 0)], mode='reflect')
            img = augmentors.augment(img)

            onehot = np.zeros((10, ), dtype=np.float32) + 0.2 / 9
            onehot[label] = 0.8
        else:
            onehot = np.zeros((10, ), dtype=np.float32)
            onehot[label] = 1.

        if DATA_FORMAT == "NCHW":
            img = img.transpose(2, 0, 1)
        return img, onehot

    if not isTrain:
        ds = MapData(ds, mapf)
        ds = BatchData(ds, BATCH, remainder=False)
        return ds

    ds = MultiProcessMapAndBatchDataZMQ(ds, 8, mapf, BATCH, buffer_size=20000)
    ds = RepeatedData(ds, -1)
    return ds 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:42,代碼來源:cifar10-fast.py

示例6: get_cifar_augmented_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_cifar_augmented_data(
        subset, options, do_multiprocess=True, do_validation=False, shuffle=None):
    isTrain = subset == 'train' and do_multiprocess
    shuffle = shuffle if shuffle is not None else isTrain
    if options.num_classes == 10 and options.ds_name == 'cifar10':
        ds = dataset.Cifar10(subset, shuffle=shuffle, do_validation=do_validation)
        cutout_length = 16
        n_holes=1
    elif options.num_classes == 100 and options.ds_name == 'cifar100':
        ds = dataset.Cifar100(subset, shuffle=shuffle, do_validation=do_validation)
        cutout_length = 8
        n_holes=1
    else:
        raise ValueError('Number of classes must be set to 10(default) or 100 for CIFAR')
    logger.info('{} set has n_samples: {}'.format(subset, len(ds.data)))
    pp_mean = ds.get_per_pixel_mean()
    if isTrain:
        logger.info('Will do cut-out with length={} n_holes={}'.format(
            cutout_length, n_holes
        ))
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0),
            Cutout(length=cutout_length, n_holes=n_holes),
        ]
    else:
        augmentors = [
            imgaug.MapImage(lambda x: (x - pp_mean)/128.0)
        ]
    ds = AugmentImageComponent(ds, augmentors)
    ds = BatchData(ds, options.batch_size // options.nr_gpu, remainder=not isTrain)
    if do_multiprocess:
        ds = PrefetchData(ds, 3, 2)
    return ds 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:38,代碼來源:cifar.py

示例7: get_data

# 需要導入模塊: from tensorpack.dataflow import dataset [as 別名]
# 或者: from tensorpack.dataflow.dataset import Cifar10 [as 別名]
def get_data(train_or_test, isMixup, alpha):
    isTrain = train_or_test == 'train'
    ds = dataset.Cifar10(train_or_test)
    if isTrain:
        augmentors = [
            imgaug.CenterPaste((40, 40)),
            imgaug.RandomCrop((32, 32)),
            imgaug.Flip(horiz=True),
        ]
        ds = AugmentImageComponent(ds, augmentors)

    batch = BATCH_SIZE
    ds = BatchData(ds, batch, remainder=not isTrain)

    def f(dp):
        images, labels = dp
        one_hot_labels = np.eye(CLASS_NUM)[labels]  # one hot coding
        if not isTrain or not isMixup:
            return [images, one_hot_labels]

        # mixup implementation:
        # Note that for larger images, it's more efficient to do mixup on GPUs (i.e. in the graph)
        weight = np.random.beta(alpha, alpha, BATCH_SIZE)
        x_weight = weight.reshape(BATCH_SIZE, 1, 1, 1)
        y_weight = weight.reshape(BATCH_SIZE, 1)
        index = np.random.permutation(BATCH_SIZE)

        x1, x2 = images, images[index]
        x = x1 * x_weight + x2 * (1 - x_weight)
        y1, y2 = one_hot_labels, one_hot_labels[index]
        y = y1 * y_weight + y2 * (1 - y_weight)
        return [x, y]

    ds = MapData(ds, f)
    return ds 
開發者ID:tensorpack,項目名稱:tensorpack,代碼行數:37,代碼來源:cifar10-preact18-mixup.py


注:本文中的tensorpack.dataflow.dataset.Cifar10方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。