當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_transform.TFTransformOutput方法代碼示例

本文整理匯總了Python中tensorflow_transform.TFTransformOutput方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_transform.TFTransformOutput方法的具體用法?Python tensorflow_transform.TFTransformOutput怎麽用?Python tensorflow_transform.TFTransformOutput使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_transform的用法示例。


在下文中一共展示了tensorflow_transform.TFTransformOutput方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_feature_columns

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def get_feature_columns(tf_transform_output):
  """Returns the FeatureColumns for the model.

  Args:
    tf_transform_output: A `TFTransformOutput` object.

  Returns:
    A list of FeatureColumns.
  """
  # Wrap scalars as real valued columns.
  real_valued_columns = [tf.feature_column.numeric_column(key, shape=())
                         for key in NUMERIC_FEATURE_KEYS]

  # Wrap categorical columns.
  one_hot_columns = [
      tf.feature_column.indicator_column(  # pylint: disable=g-complex-comprehension
          tf.feature_column.categorical_column_with_vocabulary_file(
              key=key,
              vocabulary_file=tf_transform_output.vocabulary_file_by_name(
                  vocab_filename=key)))
      for key in CATEGORICAL_FEATURE_KEYS]

  return real_valued_columns + one_hot_columns 
開發者ID:tensorflow,項目名稱:transform,代碼行數:25,代碼來源:census_example.py

示例2: get_feature_columns

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def get_feature_columns(tf_transform_output):
  """Returns the FeatureColumns for the model.

  Args:
    tf_transform_output: A `TFTransformOutput` object.

  Returns:
    A list of FeatureColumns.
  """
  del tf_transform_output  # unused
  # Unrecognized tokens are represented by -1, but
  # categorical_column_with_identity uses the mod operator to map integers
  # to the range [0, bucket_size).  By choosing bucket_size=VOCAB_SIZE + 1, we
  # represent unrecognized tokens as VOCAB_SIZE.
  review_column = tf.feature_column.categorical_column_with_identity(
      REVIEW_KEY, num_buckets=VOCAB_SIZE + 1)
  weighted_reviews = tf.feature_column.weighted_categorical_column(
      review_column, REVIEW_WEIGHT_KEY)

  return [weighted_reviews] 
開發者ID:tensorflow,項目名稱:transform,代碼行數:22,代碼來源:sentiment_example.py

示例3: testReadTransformFn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def testReadTransformFn(self):
    path = self.get_temp_dir()
    # NOTE: we don't need to create or write to the transform_fn directory since
    # ReadTransformFn never inspects this directory.
    transform_fn_dir = os.path.join(
        path, tft.TFTransformOutput.TRANSFORM_FN_DIR)
    transformed_metadata_dir = os.path.join(
        path, tft.TFTransformOutput.TRANSFORMED_METADATA_DIR)
    metadata_io.write_metadata(test_metadata.COMPLETE_METADATA,
                               transformed_metadata_dir)

    with beam.Pipeline() as pipeline:
      saved_model_dir_pcoll, metadata = (
          pipeline | transform_fn_io.ReadTransformFn(path))
      beam_test_util.assert_that(
          saved_model_dir_pcoll,
          beam_test_util.equal_to([transform_fn_dir]),
          label='AssertSavedModelDir')
      # NOTE: metadata is currently read in a non-deferred manner.
      self.assertEqual(metadata, test_metadata.COMPLETE_METADATA) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:22,代碼來源:transform_fn_io_test.py

示例4: _example_serving_receiver_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _example_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving in inputs.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:24,代碼來源:taxi_utils.py

示例5: _flat_input_serving_receiver_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _flat_input_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving function for flat list of Dense tensors as input.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  # We construct a receiver function that receives flat list of Dense tensors as
  # features. This is as per BigQuery ML serving requirements.
  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.features) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:26,代碼來源:taxi_utils_bqml.py

示例6: _input_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _input_fn(file_pattern, tf_transform_output, batch_size=200):
  """Generates features and label for tuning/training.

  Args:
    file_pattern: input tfrecord file pattern.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  transformed_feature_spec = (
      tf_transform_output.transformed_feature_spec().copy())

  dataset = tf.data.experimental.make_batched_features_dataset(
      file_pattern=file_pattern,
      batch_size=batch_size,
      features=transformed_feature_spec,
      reader=_gzip_reader_fn,
      label_key=features.transformed_name(features.LABEL_KEY))

  return dataset 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:26,代碼來源:model.py

示例7: _example_serving_receiver_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _example_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving in inputs.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(features.LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:24,代碼來源:model.py

示例8: _input_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _input_fn(filenames, tf_transform_output, batch_size=200):
  """Generates features and labels for training or evaluation.

  Args:
    filenames: [str] list of CSV files to read data from.
    tf_transform_output: A TFTransformOutput.
    batch_size: int First dimension size of the Tensors returned by input_fn

  Returns:
    A (features, indices) tuple where features is a dictionary of
      Tensors, and indices is a single Tensor of label indices.
  """
  transformed_feature_spec = (
      tf_transform_output.transformed_feature_spec().copy())

  dataset = tf.data.experimental.make_batched_features_dataset(
      filenames, batch_size, transformed_feature_spec, reader=_gzip_reader_fn)

  transformed_features = tf.compat.v1.data.make_one_shot_iterator(
      dataset).get_next()
  # We pop the label because we do not want to use it as a feature while we're
  # training.
  return transformed_features, transformed_features.pop(
      features.transformed_name(features.LABEL_KEY)) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:26,代碼來源:model.py

示例9: _sample_vocab

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _sample_vocab(tft_output, vocab_name, label, k):
  """Samples the given vocab and returns the indices and samples.

  Args:
    tft_output: a TFTransformOutput object.
    vocab_name: the name of the embedding vocabulary made with tft.
    label: a label to assign each sample of the vocab.
    k: the maximum number of samples to take.

  Returns:
    A tuple of (indices, metadata):
      indices: a list of indices for the vocab sample.
      metadata: a list of lists of data corresponding to the indices.
  """
  vocab = tft_output.vocabulary_by_name(vocab_name)
  num_indices = min(k, len(vocab))
  indices = random.sample(range(len(vocab)), num_indices)
  return indices, [[label, vocab[i]] for i in indices] 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:20,代碼來源:utils.py

示例10: _make_embedding_col

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _make_embedding_col(feature_name, vocab_name, tft_output, mult=1):
  """Creates an embedding column.

  Args:
    feature_name: a attribute of features to get embedding vectors for.
    vocab_name: the name of the embedding vocabulary made with tft.
    tft_output: a TFTransformOutput object.
    mult: a multiplier on the embedding size.

  Returns:
    A tuple of (embedding_col, embedding_size):
      embedding_col: an n x d tensor, where n is the batch size and d is the
        length of all the features concatenated together.
      embedding_size: the embedding dimension.
  """
  vocab_size = tft_output.vocabulary_size_by_name(vocab_name)
  embedding_size = int(_default_embedding_size(vocab_size) * mult)
  cat_col = tf.feature_column.categorical_column_with_identity(
      key=feature_name, num_buckets=vocab_size + 1, default_value=vocab_size)
  embedding_col = tf.feature_column.embedding_column(cat_col, embedding_size)
  return embedding_col, embedding_size 
開發者ID:GoogleCloudPlatform,項目名稱:professional-services,代碼行數:23,代碼來源:model.py

示例11: testWriteTransformFn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def testWriteTransformFn(self):
    transform_output_dir = os.path.join(self.get_temp_dir(), 'output')

    with beam.Pipeline() as pipeline:
      # Create an empty directory for the source saved model dir.
      saved_model_dir = os.path.join(self.get_temp_dir(), 'source')
      file_io.recursive_create_dir(saved_model_dir)
      saved_model_dir_pcoll = (
          pipeline | 'CreateSavedModelDir' >> beam.Create([saved_model_dir]))
      # Combine test metadata with a dict of PCollections resolving futures.
      deferred_metadata = pipeline | 'CreateDeferredMetadata' >> beam.Create(
          [test_metadata.COMPLETE_METADATA])
      metadata = beam_metadata_io.BeamDatasetMetadata(
          test_metadata.INCOMPLETE_METADATA, deferred_metadata)

      _ = ((saved_model_dir_pcoll, metadata)
           | transform_fn_io.WriteTransformFn(transform_output_dir))

    # Test reading with TFTransformOutput
    tf_transform_output = tft.TFTransformOutput(transform_output_dir)
    metadata = tf_transform_output.transformed_metadata
    self.assertEqual(metadata, test_metadata.COMPLETE_METADATA)

    transform_fn_dir = tf_transform_output.transform_savedmodel_dir
    self.assertTrue(file_io.file_exists(transform_fn_dir))
    self.assertTrue(file_io.is_directory(transform_fn_dir)) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:28,代碼來源:transform_fn_io_test.py

示例12: _eval_input_receiver_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _eval_input_receiver_fn(tf_transform_output, schema):
  """Build everything needed for the tf-model-analysis to run the model.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    EvalInputReceiver function, which contains:
      - Tensorflow graph which parses raw untransformed features, applies the
        tf-transform preprocessing operators.
      - Set of raw, untransformed features.
      - Label against which predictions will be compared.
  """
  # Notice that the inputs are raw features, not transformed features here.
  raw_feature_spec = _get_raw_feature_spec(schema)

  serialized_tf_example = tf.placeholder(
      dtype=tf.string, shape=[None], name='input_example_tensor')

  # Add a parse_example operator to the tensorflow graph, which will parse
  # raw, untransformed, tf examples.
  features = tf.parse_example(serialized_tf_example, raw_feature_spec)

  # Now that we have our raw examples, process them through the tf-transform
  # function computed during the preprocessing step.
  transformed_features = tf_transform_output.transform_raw_features(
      features)

  # The key name MUST be 'examples'.
  receiver_tensors = {'examples': serialized_tf_example}

  # NOTE: Model is driven by transformed features (since training works on the
  # materialized output of TFT, but slicing will happen on raw features.
  features.update(transformed_features)

  return tfma.export.EvalInputReceiver(
      features=features,
      receiver_tensors=receiver_tensors,
      labels=transformed_features[_transformed_name(_LABEL_KEY)]) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:42,代碼來源:taxi_utils.py

示例13: _input_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _input_fn(filenames, tf_transform_output, batch_size=200):
  """Generates features and labels for training or evaluation.

  Args:
    filenames: [str] list of CSV files to read data from.
    tf_transform_output: A TFTransformOutput.
    batch_size: int First dimension size of the Tensors returned by input_fn

  Returns:
    A (features, indices) tuple where features is a dictionary of
      Tensors, and indices is a single Tensor of label indices.
  """
  transformed_feature_spec = (
      tf_transform_output.transformed_feature_spec().copy())

  dataset = tf.data.experimental.make_batched_features_dataset(
      filenames, batch_size, transformed_feature_spec, reader=_gzip_reader_fn)

  transformed_features = dataset.make_one_shot_iterator().get_next()
  # We pop the label because we do not want to use it as a feature while we're
  # training.
  return transformed_features, transformed_features.pop(
      _transformed_name(_LABEL_KEY))


# TFX will call this function 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:28,代碼來源:taxi_utils.py

示例14: _input_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def _input_fn(file_pattern: Text, tf_transform_output: tft.TFTransformOutput,
              ) -> Tuple[np.ndarray, np.ndarray]:
  """Generates features and label for tuning/training.

  Args:
    file_pattern: input tfrecord file pattern.
    tf_transform_output: A TFTransformOutput.

  Returns:
    A (features, indices) tuple where features is a matrix of features, and
      indices is a single vector of label indices.
  """
  def _parse_example(example):
    """Parses a tfrecord into a (features, indices) tuple of Tensors."""
    parsed_example = tf.io.parse_single_example(
        serialized=example,
        features=tf_transform_output.transformed_feature_spec())
    label = parsed_example.pop(_transformed_name(_LABEL_KEY))
    return parsed_example, label

  filenames = tf.data.Dataset.list_files(file_pattern)
  dataset = tf.data.TFRecordDataset(filenames, compression_type='GZIP')
  # TODO(b/157598676): Make AUTOTUNE the default.
  dataset = dataset.map(
      _parse_example,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  dataset = dataset.shuffle(_SHUFFLE_BUFFER)
  return _tf_dataset_to_numpy(dataset)


# TFX Transform will call this function. 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:33,代碼來源:iris_utils_sklearn.py

示例15: run_fn

# 需要導入模塊: import tensorflow_transform [as 別名]
# 或者: from tensorflow_transform import TFTransformOutput [as 別名]
def run_fn(fn_args: TrainerFnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """
  tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)

  x_train, y_train = _input_fn(fn_args.train_files, tf_transform_output)
  x_eval, y_eval = _input_fn(fn_args.eval_files, tf_transform_output)

  steps_per_epoch = _TRAIN_DATA_SIZE / _TRAIN_BATCH_SIZE

  model = MLPClassifier(
      hidden_layer_sizes=[8, 8, 8],
      activation='relu',
      solver='adam',
      batch_size=_TRAIN_BATCH_SIZE,
      learning_rate_init=0.0005,
      max_iter=int(fn_args.train_steps / steps_per_epoch),
      verbose=True)
  model.fit(x_train, y_train)
  absl.logging.info(model)

  score = model.score(x_eval, y_eval)
  absl.logging.info('Accuracy: %f', score)

  os.makedirs(fn_args.serving_model_dir)

  # TODO(humichael): Export TFT graph for serving once a solution for serving is
  # determined.
  model_path = os.path.join(fn_args.serving_model_dir, 'model.joblib')
  with tf.io.gfile.GFile(model_path, 'wb+') as f:
    joblib.dump(model, f) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:36,代碼來源:iris_utils_sklearn.py


注:本文中的tensorflow_transform.TFTransformOutput方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。