當前位置: 首頁>>代碼示例>>Python>>正文


Python prediction_service_pb2_grpc.PredictionServiceStub方法代碼示例

本文整理匯總了Python中tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub方法的典型用法代碼示例。如果您正苦於以下問題:Python prediction_service_pb2_grpc.PredictionServiceStub方法的具體用法?Python prediction_service_pb2_grpc.PredictionServiceStub怎麽用?Python prediction_service_pb2_grpc.PredictionServiceStub使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_serving.apis.prediction_service_pb2_grpc的用法示例。


在下文中一共展示了prediction_service_pb2_grpc.PredictionServiceStub方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def main():
  parser = argparse.ArgumentParser(description="Translation client example")
  parser.add_argument("--model_name", required=True,
                      help="model name")
  parser.add_argument("--sentencepiece_model", required=True,
                      help="path to the sentence model")
  parser.add_argument("--host", default="localhost",
                      help="model server host")
  parser.add_argument("--port", type=int, default=9000,
                      help="model server port")
  parser.add_argument("--timeout", type=float, default=10.0,
                      help="request timeout")
  args = parser.parse_args()

  channel = grpc.insecure_channel("%s:%d" % (args.host, args.port))
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
  tokenizer = pyonmttok.Tokenizer("none", sp_model_path=args.sentencepiece_model)

  while True:
    text = input("Source: ")
    output = translate(stub, args.model_name, [text], tokenizer, timeout=args.timeout)
    print("Target: %s" % output[0])
    print("") 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:25,代碼來源:ende_client.py

示例2: get_image_quality_predictions

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def get_image_quality_predictions(image_path, model_name):
    # Load and preprocess image
    image = utils.load_image(image_path, target_size=(224, 224))
    image = keras.applications.mobilenet.preprocess_input(image)

    # Run through model
    target = f'{TFS_HOST}:{TFS_PORT}'
    channel = grpc.insecure_channel(target)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'image_quality'

    request.inputs['input_image'].CopyFrom(
        tf.contrib.util.make_tensor_proto(np.expand_dims(image, 0))
    )

    response = stub.Predict(request, 10.0)
    result = round(calc_mean_score(response.outputs['quality_prediction'].float_val), 2)

    print(json.dumps({'mean_score_prediction': np.round(result, 3)}, indent=2)) 
開發者ID:idealo,項目名稱:image-quality-assessment,代碼行數:23,代碼來源:tfs_sample_client.py

示例3: main

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def main(argv):
  del argv

  tpu_address = FLAGS.tpu
  if not any(pref in FLAGS.tpu for pref in ['http://', 'grpc://']):
    tpu_address = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu).master()
    tpu_address = '{}:{}'.format(tpu_address[:-len(':1234')],
                                 '8470' if FLAGS.grpc else '8473')
  tpu_address = tpu_address[len('abcd://'):]
  tf.logging.info('ModelServer at: {}'.format(tpu_address))

  if FLAGS.grpc:
    grpc_channel = grpc.insecure_channel(tpu_address)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(grpc_channel)
    run_grpc_load_test(FLAGS.num_requests, FLAGS.qps, generate_grpc_request(),
                       stub)
  else:
    payload = generate_rest_payload()
    run_rest_load_test(FLAGS.num_requests, FLAGS.qps, tpu_address, payload) 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:22,代碼來源:load_test_client.py

示例4: prepare_stub_and_request

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def prepare_stub_and_request(address, model_name, model_version=None, creds=None, opts=None,
                             request_type=INFERENCE_REQUEST):
    if opts is not None:
        opts = (('grpc.ssl_target_name_override', opts),)
    if creds is not None:
        channel = grpc.secure_channel(address, creds, options=opts)
    else:
        channel = grpc.insecure_channel(address, options=opts)
    request = None
    stub = None
    if request_type == MODEL_STATUS_REQUEST:
        request = get_model_status_pb2.GetModelStatusRequest()
        stub = model_service_pb2_grpc.ModelServiceStub(channel)
    elif request_type == INFERENCE_REQUEST:
        stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
        request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    if model_version is not None:
        request.model_spec.version.value = model_version
    return stub, request 
開發者ID:IntelAI,項目名稱:inference-model-manager,代碼行數:22,代碼來源:grpc_client_utils.py

示例5: grpc_predict_raw

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def grpc_predict_raw(data):
    port = 8500
    channel = grpc.insecure_channel('{host}:{port}'.format(host=host, port=port))
    # channel = implementations.insecure_channel(host, int(port))

    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'textcnn_model'
    request.model_spec.signature_name = "serving_default"

    tensor_protos = {
        # 一條一條的請求方式
        'sentence':tf.make_tensor_proto(data['sentence'], dtype=tf.int64, shape=[1, 55])
    }
    for k in tensor_protos:
        request.inputs[k].CopyFrom(tensor_protos[k])

    response = stub.Predict(request, 5.0)
    print(response) 
開發者ID:sladesha,項目名稱:deep_learning,代碼行數:21,代碼來源:serving_grpc_client.py

示例6: gRPCPredict

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def gRPCPredict(request: model.Request):
    start = datetime.datetime.now()
    stub = prediction_service_pb2_grpc.PredictionServiceStub(
        grpc.insecure_channel(f"{SERVING_HOST}:{SERVING_GRPC_PORT}")
    )
    predictRequest = predict_pb2.PredictRequest()
    predictRequest.model_spec.name = model_name
    predictRequest.inputs['x'].CopyFrom(
        make_tensor_proto(
            request.instances,
            shape = [len(request.instances), 1]
        )
    )
    predictResult = stub.Predict(predictRequest, PREDICT_TIMEOUT)
    return {
        'predictions': list(predictResult.outputs['y'].float_val),
        'meta': {
            'model_name': model_name,
            'duration': util.millis_interval(start,datetime.datetime.now()),
            'timestamp': datetime.datetime.now().timestamp(),
            'jetson_model': jetson_model
        }
    } 
開發者ID:helmut-hoffer-von-ankershoffen,項目名稱:jetson,代碼行數:25,代碼來源:grpc.py

示例7: _create_stub

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def _create_stub(server):
  channel = grpc.insecure_channel(server)
  return prediction_service_pb2_grpc.PredictionServiceStub(channel) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:5,代碼來源:serving_utils.py

示例8: __init__

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def __init__(self, endpoint: Text, model_name: Text):
    # Note that the channel instance is automatically closed (unsubscribed) on
    # deletion, so we don't have to manually close this on __del__.
    self._channel = grpc.insecure_channel(endpoint)
    self._model_name = model_name
    self._model_service = model_service_pb2_grpc.ModelServiceStub(self._channel)
    self._prediction_service = prediction_service_pb2_grpc.PredictionServiceStub(self._channel)  # pylint: disable=line-too-long 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:9,代碼來源:tensorflow_serving_client.py

示例9: make_request

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def make_request(image_path, server):
    """

    :param image_path:
    :param server:
    :return:
    """
    channel = grpc.insecure_channel(server)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image = cv2.resize(image, (CFG.ARCH.INPUT_SIZE[0], CFG.ARCH.INPUT_SIZE[1]), interpolation=cv2.INTER_LINEAR)
    image = np.array(image, np.float32) / 127.5 - 1.0

    image_list = np.array([image], dtype=np.float32)

    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'crnn'
    request.model_spec.signature_name = sm.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

    request.inputs['input_tensor'].CopyFrom(make_tensor_proto(
        image_list, shape=[1, CFG.ARCH.INPUT_SIZE[1], CFG.ARCH.INPUT_SIZE[0], 3]))

    try:
        result = stub.Predict(request, 10.0)

        return result
    except Exception as err:
        print(err)
        return None 
開發者ID:MaybeShewill-CV,項目名稱:CRNN_Tensorflow,代碼行數:32,代碼來源:crnn_python_client_via_grpc.py

示例10: __init__

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def __init__(self,
               host,
               port,
               model_name,
               preprocessor,
               postprocessor,
               bpe_codes):
    channel = grpc.insecure_channel("%s:%d" % (host, port))
    self.stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    self.model_name = model_name

    self.preprocessor = preprocessor
    self.postprocessor = postprocessor
    with open(bpe_codes) as f:
      self.bpe = apply_bpe.BPE(f) 
開發者ID:leod,項目名稱:hncynic,代碼行數:17,代碼來源:client.py

示例11: __init__

# 需要導入模塊: from tensorflow_serving.apis import prediction_service_pb2_grpc [as 別名]
# 或者: from tensorflow_serving.apis.prediction_service_pb2_grpc import PredictionServiceStub [as 別名]
def __init__(self):
    self.thread_lock = threading.Lock()
    self.num_completed_requests = 0
    self.num_failed_requests = 0
    self.latencies = []
    self.file_list = get_files_in_directory_sorted(FLAGS.image_directory)
    self.num_images = len(self.file_list)

    channel = grpc.insecure_channel(FLAGS.server)
    self.stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)

    # Fix random seed so that sequence of images sent to server is
    # deterministic.
    random.seed(RANDOM_SEED) 
開發者ID:GoogleCloudPlatform,項目名稱:PerfKitBenchmarker,代碼行數:16,代碼來源:tensorflow_serving_client_workload.py


注:本文中的tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。