當前位置: 首頁>>代碼示例>>Python>>正文


Python predict_pb2.PredictRequest方法代碼示例

本文整理匯總了Python中tensorflow_serving.apis.predict_pb2.PredictRequest方法的典型用法代碼示例。如果您正苦於以下問題:Python predict_pb2.PredictRequest方法的具體用法?Python predict_pb2.PredictRequest怎麽用?Python predict_pb2.PredictRequest使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_serving.apis.predict_pb2的用法示例。


在下文中一共展示了predict_pb2.PredictRequest方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_grpc_request_fn

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def make_grpc_request_fn(servable_name, server, timeout_secs):
  """Wraps function to make grpc requests with runtime args."""
  stub = _create_stub(server)

  def _make_grpc_request(examples):
    """Builds and sends request to TensorFlow model server."""
    request = predict_pb2.PredictRequest()
    request.model_spec.name = servable_name
    request.inputs["input"].CopyFrom(
        tf.contrib.util.make_tensor_proto(
            [ex.SerializeToString() for ex in examples], shape=[len(examples)]))
    response = stub.Predict(request, timeout_secs)
    outputs = tf.make_ndarray(response.outputs["outputs"])
    scores = tf.make_ndarray(response.outputs["scores"])
    assert len(outputs) == len(scores)
    return [{
        "outputs": outputs[i],
        "scores": scores[i]
    } for i in range(len(outputs))]

  return _make_grpc_request 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:serving_utils.py

示例2: make_grpc_request_fn

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def make_grpc_request_fn(servable_name, server, timeout_secs):
  """Wraps function to make grpc requests with runtime args."""
  stub = _create_stub(server)

  def _make_grpc_request(examples):
    """Builds and sends request to TensorFlow model server."""
    request = predict_pb2.PredictRequest()
    request.model_spec.name = servable_name
    request.inputs["input"].CopyFrom(
        tf.make_tensor_proto(
            [ex.SerializeToString() for ex in examples], shape=[len(examples)]))
    response = stub.Predict(request, timeout_secs)
    outputs = tf.make_ndarray(response.outputs["outputs"])
    scores = tf.make_ndarray(response.outputs["scores"])
    assert len(outputs) == len(scores)
    return [{  # pylint: disable=g-complex-comprehension
        "outputs": output,
        "scores": score
    } for output, score in zip(outputs, scores)]

  return _make_grpc_request 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:serving_utils.py

示例3: send_request

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def send_request(stub, model_name, batch_tokens, timeout=5.0):
  """Sends a translation request.

  Args:
    stub: The prediction service stub.
    model_name: The model to request.
    tokens: A list of tokens.
    timeout: Timeout after this many seconds.

  Returns:
    A future.
  """
  batch_tokens, lengths, max_length = pad_batch(batch_tokens)
  batch_size = len(lengths)
  request = predict_pb2.PredictRequest()
  request.model_spec.name = model_name
  request.inputs["tokens"].CopyFrom(tf.make_tensor_proto(
      batch_tokens, dtype=tf.string, shape=(batch_size, max_length)))
  request.inputs["length"].CopyFrom(tf.make_tensor_proto(
      lengths, dtype=tf.int32, shape=(batch_size,)))
  return stub.Predict.future(request, timeout) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:23,代碼來源:ende_client.py

示例4: get_image_quality_predictions

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def get_image_quality_predictions(image_path, model_name):
    # Load and preprocess image
    image = utils.load_image(image_path, target_size=(224, 224))
    image = keras.applications.mobilenet.preprocess_input(image)

    # Run through model
    target = f'{TFS_HOST}:{TFS_PORT}'
    channel = grpc.insecure_channel(target)
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = 'image_quality'

    request.inputs['input_image'].CopyFrom(
        tf.contrib.util.make_tensor_proto(np.expand_dims(image, 0))
    )

    response = stub.Predict(request, 10.0)
    result = round(calc_mean_score(response.outputs['quality_prediction'].float_val), 2)

    print(json.dumps({'mean_score_prediction': np.round(result, 3)}, indent=2)) 
開發者ID:idealo,項目名稱:image-quality-assessment,代碼行數:23,代碼來源:tfs_sample_client.py

示例5: prepare_stub_and_request

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def prepare_stub_and_request(address, model_name, model_version=None, creds=None, opts=None,
                             request_type=INFERENCE_REQUEST):
    if opts is not None:
        opts = (('grpc.ssl_target_name_override', opts),)
    if creds is not None:
        channel = grpc.secure_channel(address, creds, options=opts)
    else:
        channel = grpc.insecure_channel(address, options=opts)
    request = None
    stub = None
    if request_type == MODEL_STATUS_REQUEST:
        request = get_model_status_pb2.GetModelStatusRequest()
        stub = model_service_pb2_grpc.ModelServiceStub(channel)
    elif request_type == INFERENCE_REQUEST:
        stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
        request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    if model_version is not None:
        request.model_spec.version.value = model_version
    return stub, request 
開發者ID:IntelAI,項目名稱:inference-model-manager,代碼行數:22,代碼來源:grpc_client_utils.py

示例6: testBuildRequests_EstimatorModel_Predict

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def testBuildRequests_EstimatorModel_Predict(self):
    builder = request_builder._TFServingRpcRequestBuilder(
        model_name='foo',
        signatures=self._GetEstimatorModelSignature(
            signature_names=['predict']))
    builder.ReadExamplesArtifact(self._examples, num_examples=1)

    result = builder.BuildRequests()

    self.assertEqual(len(result), 1)
    self.assertIsInstance(result[0], predict_pb2.PredictRequest)
    self.assertEqual(result[0].model_spec.name, 'foo')
    self.assertEqual(result[0].model_spec.signature_name, 'predict')
    self.assertEqual(len(result[0].inputs), 1)
    input_key = list(result[0].inputs.keys())[0]
    self.assertEqual(result[0].inputs[input_key].dtype,
                     tf.dtypes.string.as_datatype_enum) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:19,代碼來源:request_builder_test.py

示例7: main

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def main():
  # Generate inference data
  keys = numpy.asarray([1, 2, 3, 4])
  keys_tensor_proto = tf.contrib.util.make_tensor_proto(keys, dtype=tf.int32)
  features = numpy.asarray(
      [[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 1, 1, 1, 1, 1, 1, 1, 1],
       [9, 8, 7, 6, 5, 4, 3, 2, 1], [9, 9, 9, 9, 9, 9, 9, 9, 9]])
  features_tensor_proto = tf.contrib.util.make_tensor_proto(
      features, dtype=tf.float32)

  # Create gRPC client
  channel = implementations.insecure_channel(FLAGS.host, FLAGS.port)
  stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
  request = predict_pb2.PredictRequest()
  request.model_spec.name = FLAGS.model_name
  if FLAGS.model_version > 0:
    request.model_spec.version.value = FLAGS.model_version
  if FLAGS.signature_name != "":
    request.model_spec.signature_name = FLAGS.signature_name
  request.inputs["keys"].CopyFrom(keys_tensor_proto)
  request.inputs["features"].CopyFrom(features_tensor_proto)

  # Send request
  result = stub.Predict(request, FLAGS.request_timeout)
  print(result) 
開發者ID:tobegit3hub,項目名稱:tensorflow_template_application,代碼行數:27,代碼來源:predict_client.py

示例8: _do_local_inference

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def _do_local_inference(host, port, serialized_examples, model_name):
  """Performs inference on a model hosted by the host:port server."""

  channel = implementations.insecure_channel(host, int(port))
  stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)

  request = predict_pb2.PredictRequest()
  # request.model_spec.name = 'chicago_taxi'
  request.model_spec.name = model_name
  request.model_spec.signature_name = 'predict'

  tfproto = tf.contrib.util.make_tensor_proto([serialized_examples],
                                              shape=[len(serialized_examples)],
                                              dtype=tf.string)
  # The name of the input tensor is 'examples' based on
  # https://github.com/tensorflow/tensorflow/blob/r1.9/tensorflow/python/estimator/export/export.py#L290
  request.inputs['examples'].CopyFrom(tfproto)
  print(stub.Predict(request, _LOCAL_INFERENCE_TIMEOUT_SECONDS)) 
開發者ID:amygdala,項目名稱:code-snippets,代碼行數:20,代碼來源:chicago_taxi_client.py

示例9: grpc_predict_raw

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def grpc_predict_raw(data):
    port = 8500
    channel = grpc.insecure_channel('{host}:{port}'.format(host=host, port=port))
    # channel = implementations.insecure_channel(host, int(port))

    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'textcnn_model'
    request.model_spec.signature_name = "serving_default"

    tensor_protos = {
        # 一條一條的請求方式
        'sentence':tf.make_tensor_proto(data['sentence'], dtype=tf.int64, shape=[1, 55])
    }
    for k in tensor_protos:
        request.inputs[k].CopyFrom(tensor_protos[k])

    response = stub.Predict(request, 5.0)
    print(response) 
開發者ID:sladesha,項目名稱:deep_learning,代碼行數:21,代碼來源:serving_grpc_client.py

示例10: gRPCPredict

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def gRPCPredict(request: model.Request):
    start = datetime.datetime.now()
    stub = prediction_service_pb2_grpc.PredictionServiceStub(
        grpc.insecure_channel(f"{SERVING_HOST}:{SERVING_GRPC_PORT}")
    )
    predictRequest = predict_pb2.PredictRequest()
    predictRequest.model_spec.name = model_name
    predictRequest.inputs['x'].CopyFrom(
        make_tensor_proto(
            request.instances,
            shape = [len(request.instances), 1]
        )
    )
    predictResult = stub.Predict(predictRequest, PREDICT_TIMEOUT)
    return {
        'predictions': list(predictResult.outputs['y'].float_val),
        'meta': {
            'model_name': model_name,
            'duration': util.millis_interval(start,datetime.datetime.now()),
            'timestamp': datetime.datetime.now().timestamp(),
            'jetson_model': jetson_model
        }
    } 
開發者ID:helmut-hoffer-von-ankershoffen,項目名稱:jetson,代碼行數:25,代碼來源:grpc.py

示例11: prepare_grpc_request

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def prepare_grpc_request(model_name, signature_name, input_dict):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    request.model_spec.signature_name = signature_name
    for key in input_dict:
        request.inputs[key].CopyFrom(
            make_tensor_proto([input_dict[key]]))
    return request 
開發者ID:yyht,項目名稱:BERT,代碼行數:10,代碼來源:test_grpc_serving.py

示例12: do_inference

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def do_inference(num_tests, concurrency=1):
  channel = implementations.insecure_channel(host, int(port))
  stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)

  coord = _Coordinator(num_tests, concurrency)

  for _ in range(num_tests):
    # dummy audio
    duration, sr, n_fft, win_length, hop_length, n_mels, max_db, min_db = 4, 16000, 512, 512, 128, 80, 35, -55
    filename = librosa.util.example_audio_file()
    wav = read_wav(filename, sr=sr, duration=duration)
    mel = wav2melspec_db(wav, sr, n_fft, win_length, hop_length, n_mels)
    mel = normalize_db(mel, max_db=max_db, min_db=min_db)
    mel = mel.astype(np.float32)
    mel = np.expand_dims(mel, axis=0)  # single batch
    n_timesteps = sr / hop_length * duration + 1

    # build request
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'voice_vector'
    request.model_spec.signature_name = 'predict'
    request.inputs['x'].CopyFrom(tf.contrib.util.make_tensor_proto(mel, shape=[1, n_timesteps, n_mels]))

    coord.throttle()

    # send asynchronous response (recommended. use this.)
    result_future = stub.Predict.future(request, 10.0)  # timeout
    result_future.add_done_callback(_create_rpc_callback(coord))

    # send synchronous response (NOT recommended)
    # result = stub.Predict(request, 5.0)

  coord.wait_all_done() 
開發者ID:andabi,項目名稱:voice-vector,代碼行數:35,代碼來源:client.py

示例13: generate_grpc_request

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def generate_grpc_request():
  """Generate gRPC inference request with payload."""
  request = predict_pb2.PredictRequest()
  request.model_spec.name = FLAGS.model_name
  request.model_spec.signature_name = 'serving_default'

  image = get_image_payload()

  request.inputs[FLAGS.input_name].CopyFrom(
      tf.contrib.util.make_tensor_proto(
          [image] * FLAGS.batch_size, shape=[FLAGS.batch_size]))
  return request 
開發者ID:artyompal,項目名稱:tpu_models,代碼行數:14,代碼來源:load_test_client.py

示例14: get_fake_request

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def get_fake_request(model_name, data_shape, input_blob, version=None):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = model_name
    if version is not None:
        request.model_spec.version.value = version
    data = np.ones(shape=data_shape)
    request.inputs[input_blob].CopyFrom(
        make_tensor_proto(data, shape=data.shape))
    return request 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:11,代碼來源:conftest.py

示例15: main

# 需要導入模塊: from tensorflow_serving.apis import predict_pb2 [as 別名]
# 或者: from tensorflow_serving.apis.predict_pb2 import PredictRequest [as 別名]
def main(_):
    host, port = FLAGS.server.split(':')
    channel = implementations.insecure_channel(host, int(port))
    stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
    # Send request
    image = tf.gfile.FastGFile(FLAGS.image, 'rb').read()
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'tensorflow-serving'
    request.model_spec.signature_name = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
    request.inputs['image'].CopyFrom(tf.contrib.util.make_tensor_proto(image))
    #request.inputs['input'].CopyFrom()

    result = stub.Predict(request, 10.0)  # 10 secs timeout
    print(result) 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:16,代碼來源:client.py


注:本文中的tensorflow_serving.apis.predict_pb2.PredictRequest方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。