本文整理匯總了Python中tensorflow_probability.distributions方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_probability.distributions方法的具體用法?Python tensorflow_probability.distributions怎麽用?Python tensorflow_probability.distributions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow_probability
的用法示例。
在下文中一共展示了tensorflow_probability.distributions方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sample
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def sample(self, n, max_length=None, z=None, c_input=None, **kwargs):
"""Sample with an optional conditional embedding `z`."""
if z is not None and int(z.shape[0]) != n:
raise ValueError(
'`z` must have a first dimension that equals `n` when given. '
'Got: %d vs %d' % (z.shape[0], n))
if self.hparams.z_size and z is None:
tf.logging.warning(
'Sampling from conditional model without `z`. Using random `z`.')
normal_shape = [n, self.hparams.z_size]
normal_dist = tfp.distributions.Normal(
loc=tf.zeros(normal_shape), scale=tf.ones(normal_shape))
z = normal_dist.sample()
return self.decoder.sample(n, max_length, z, c_input, **kwargs)
示例2: sample
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def sample(self, n, max_length=None, z=None, c_input=None, **kwargs):
"""Sample with an optional conditional embedding `z`."""
if z is not None and z.shape[0].value != n:
raise ValueError(
'`z` must have a first dimension that equals `n` when given. '
'Got: %d vs %d' % (z.shape[0].value, n))
if self.hparams.z_size and z is None:
tf.logging.warning(
'Sampling from conditional model without `z`. Using random `z`.')
normal_shape = [n, self.hparams.z_size]
normal_dist = tfp.distributions.Normal(
loc=tf.zeros(normal_shape), scale=tf.ones(normal_shape))
z = normal_dist.sample()
return self.decoder.sample(n, max_length, z, c_input, **kwargs)
示例3: normal_prior
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def normal_prior(prior_std):
"""Defines normal distribution prior for Bayesian neural network."""
def prior_fn(dtype, shape, name, trainable, add_variable_fn):
tfd = tfp.distributions
dist = tfd.Normal(loc=tf.zeros(shape, dtype),
scale=dtype.as_numpy_dtype((prior_std)))
batch_ndims = tf.size(input=dist.batch_shape_tensor())
return tfd.Independent(dist, reinterpreted_batch_ndims=batch_ndims)
return prior_fn
示例4: encode
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def encode(self, sequence, sequence_length, control_sequence=None):
"""Encodes input sequences into a MultivariateNormalDiag distribution.
Args:
sequence: A Tensor with shape `[num_sequences, max_length, input_depth]`
containing the sequences to encode.
sequence_length: The length of each sequence in the `sequence` Tensor.
control_sequence: (Optional) A Tensor with shape
`[num_sequences, max_length, control_depth]` containing control
sequences on which to condition. These will be concatenated depthwise
to the input sequences.
Returns:
A tfp.distributions.MultivariateNormalDiag representing the posterior
distribution for each sequence.
"""
hparams = self.hparams
z_size = hparams.z_size
sequence = tf.to_float(sequence)
if control_sequence is not None:
control_sequence = tf.to_float(control_sequence)
sequence = tf.concat([sequence, control_sequence], axis=-1)
encoder_output = self.encoder.encode(sequence, sequence_length)
mu = tf.layers.dense(
encoder_output,
z_size,
name='encoder/mu',
kernel_initializer=tf.random_normal_initializer(stddev=0.001))
sigma = tf.layers.dense(
encoder_output,
z_size,
activation=tf.nn.softplus,
name='encoder/sigma',
kernel_initializer=tf.random_normal_initializer(stddev=0.001))
return ds.MultivariateNormalDiag(loc=mu, scale_diag=sigma)
示例5: kl_divergence
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def kl_divergence(self, parameters_a, parameters_b):
"""Return KL divergence between the two distributions."""
dist_a = self.create_dist(parameters_a)
dist_b = self.create_dist(parameters_b)
kl = tfd.kl_divergence(dist_a, dist_b)
if self._event_ndims == 1:
kl = tf.reduce_sum(kl, axis=-1)
return kl
示例6: _distribution
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def _distribution(self, time_step, policy_state):
raise NotImplementedError(
'EpsilonGreedyPolicy does not support distributions yet.')
示例7: nested_distributions_from_specs
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def nested_distributions_from_specs(specs, parameters):
"""Builds a nest of distributions from a nest of specs.
Args:
specs: A nest of distribution specs.
parameters: A nest of distribution kwargs.
Returns:
Nest of distribution instances with the same structure as the given specs.
"""
return nest.map_structure_up_to(
specs, lambda spec, parameters: spec.build_distribution(**parameters),
specs, parameters)
示例8: _distribution
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def _distribution(self, time_step, policy_state):
network_state, time_steps, actions = policy_state
def _apply_sequence_update(tensors, tensor):
return tf.concat([tensors, tensor[:, None]], axis=1)[:, 1:]
time_steps = tf.nest.map_structure(
_apply_sequence_update, time_steps, time_step)
actions = tf.nest.map_structure(
_apply_sequence_update, actions, tf.zeros_like(actions[:, 0]))
# Actor network outputs nested structure of distributions or actions.
action_or_distribution, network_state = self._apply_actor_network(
time_steps, actions, network_state)
policy_state = (network_state, time_steps, actions)
def _to_distribution(action_or_distribution):
if isinstance(action_or_distribution, tf.Tensor):
# This is an action tensor, so wrap it in a deterministic distribution.
return tfp.distributions.Deterministic(loc=action_or_distribution)
return action_or_distribution
distribution = tf.nest.map_structure(_to_distribution,
action_or_distribution)
return policy_step.PolicyStep(distribution, policy_state)
示例9: _distribution
# 需要導入模塊: import tensorflow_probability [as 別名]
# 或者: from tensorflow_probability import distributions [as 別名]
def _distribution(self, time_step, policy_state, training=False):
if not policy_state:
policy_state = {'actor_network_state': (), 'value_network_state': ()}
else:
policy_state = policy_state.copy()
if 'actor_network_state' not in policy_state:
policy_state['actor_network_state'] = ()
if 'value_network_state' not in policy_state:
policy_state['value_network_state'] = ()
new_policy_state = {'actor_network_state': (), 'value_network_state': ()}
def _to_distribution(action_or_distribution):
if isinstance(action_or_distribution, tf.Tensor):
# This is an action tensor, so wrap it in a deterministic distribution.
return tfp.distributions.Deterministic(loc=action_or_distribution)
return action_or_distribution
(actions_or_distributions,
new_policy_state['actor_network_state']) = self._apply_actor_network(
time_step, policy_state['actor_network_state'], training=training)
distributions = tf.nest.map_structure(_to_distribution,
actions_or_distributions)
if self._collect:
policy_info = {
'dist_params': ppo_utils.get_distribution_params(distributions)
}
if not self._compute_value_and_advantage_in_train:
# If value_prediction is not computed in agent.train it needs to be
# computed and saved here.
(policy_info['value_prediction'],
new_policy_state['value_network_state']) = self.apply_value_network(
time_step.observation,
time_step.step_type,
value_state=policy_state['value_network_state'],
training=False)
else:
policy_info = ()
if (not new_policy_state['actor_network_state'] and
not new_policy_state['value_network_state']):
new_policy_state = ()
elif not new_policy_state['value_network_state']:
new_policy_state.pop('value_network_state', None)
elif not new_policy_state['actor_network_state']:
new_policy_state.pop('actor_network_state', None)
return policy_step.PolicyStep(distributions, new_policy_state, policy_info)