本文整理匯總了Python中tensorflow_hub.load方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.load方法的具體用法?Python tensorflow_hub.load怎麽用?Python tensorflow_hub.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow_hub
的用法示例。
在下文中一共展示了tensorflow_hub.load方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_tf_hub_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def load_tf_hub_model(model_url: Text) -> Any:
"""Load model from cache if possible, otherwise from TFHub"""
import tensorflow_hub as tfhub
# needed to load the ConveRT model
# noinspection PyUnresolvedReferences
import tensorflow_text
import os
# required to take care of cases when other files are already
# stored in the default TFHUB_CACHE_DIR
try:
return tfhub.load(model_url)
except OSError:
directory = io_utils.create_temporary_directory()
os.environ["TFHUB_CACHE_DIR"] = directory
return tfhub.load(model_url)
示例2: generate_embeddings
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def generate_embeddings(items, module_url, random_projection_matrix=None):
"""Generates embeddings using a TF-Hub module.
Args:
items: The items to generate embedding for.
module_url: The TF-Hub module url.
random_projection_matrix: A numpy array of the random projection weights.
Returns:
item, embedding tuple.
"""
global embed_fn
if embed_fn is None:
embed_fn = hub.load(module_url)
embeddings = embed_fn(items).numpy()
if random_projection_matrix is not None:
embeddings = embeddings.dot(random_projection_matrix)
return items, embeddings
示例3: build_inputs
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for sentence_prediction task."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
y = tf.zeros((1, 1), dtype=tf.int32)
return (x, y)
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return data_loader_factory.get_data_loader(params).load(input_context)
示例4: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def __init__(self, params=cfg.TaskConfig, logging_dir=None):
super(QuestionAnsweringTask, self).__init__(params, logging_dir)
if params.hub_module_url and params.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if params.hub_module_url:
self._hub_module = hub.load(params.hub_module_url)
else:
self._hub_module = None
if params.validation_data.tokenization == 'WordPiece':
self.squad_lib = squad_lib_wp
elif params.validation_data.tokenization == 'SentencePiece':
self.squad_lib = squad_lib_sp
else:
raise ValueError('Unsupported tokenization method: {}'.format(
params.validation_data.tokenization))
if params.validation_data.input_path:
self._tf_record_input_path, self._eval_examples, self._eval_features = (
self._preprocess_eval_data(params.validation_data))
示例5: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def __init__(self, hub_module_handle):
"""Initializes a new HubModuleTokenizer instance.
Args:
hub_module_handle: A string handle accepted by hub.load(). Supported
cases include (1) a local path to a directory containing a module, and
(2) a handle to a module uploaded to e.g., https://tfhub.dev
"""
super(HubModuleTokenizer, self).__init__()
empty_tags = set()
hub_module = hub.load(hub_module_handle, tags=empty_tags)
self._hub_module_signature = hub_module.signatures['default']
_tf_text_hub_module_tokenizer_create_counter.get_cell().increase_by(1)
示例6: test_load
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def test_load(self):
if not hasattr(tf_v1.saved_model, "load_v2"):
try:
hub.load("@my/tf2_module/2")
self.fail("Failure expected. hub.module() not support in TF 1.x")
except NotImplementedError:
pass
elif tf_v1.executing_eagerly():
class AdderModule(tf.train.Checkpoint):
@tf.function(
input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)])
def add(self, x):
return x + x + 1.
to_export = AdderModule()
save_dir = os.path.join(self.get_temp_dir(), "saved_model_v2")
tf.saved_model.save(to_export, save_dir)
module_name = "test_module_v2.tgz"
self._create_tgz(save_dir, module_name)
restored_module = hub.load(
"http://localhost:%d/%s" % (self.server_port, module_name))
self.assertIsNotNone(restored_module)
self.assertTrue(hasattr(restored_module, "add"))
示例7: test_load_v1
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def test_load_v1(self):
if (not hasattr(tf_v1.saved_model, "load_v2") or
not tf_v1.executing_eagerly()):
return # The test only applies when running V2 mode.
full_module_path = test_utils.get_test_data_path("half_plus_two_v1.tar.gz")
os.chdir(os.path.dirname(full_module_path))
server_port = test_utils.start_http_server()
handle = "http://localhost:%d/half_plus_two_v1.tar.gz" % server_port
hub.load(handle)
示例8: run
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def run(args):
"""Runs the embedding generation Beam pipeline."""
if tf.io.gfile.exists(args.embed_output_dir):
print('Removing embedding output directory...')
tf.io.gfile.rmtree(args.embed_output_dir)
print('Creating empty output directory...')
tf.io.gfile.makedirs(args.embed_output_dir)
options = beam.options.pipeline_options.PipelineOptions(**vars(args))
original_dim = hub.load(args.module_url)(['']).shape[1]
random_projection_matrix = generate_random_projection_weights(
original_dim, args.projected_dim, args.embed_output_dir)
print('Starting the Beam pipeline...')
with beam.Pipeline(runner=_RUNNER, options=options) as pipeline:
_ = (
pipeline
| 'Read sentences from files' >>
beam.io.ReadFromText(file_pattern=args.data_file_pattern)
| 'Batch elements' >> util.BatchElements(
min_batch_size=_BATCH_SIZE / 2, max_batch_size=_BATCH_SIZE)
| 'Generate embeddings' >> beam.Map(
generate_embeddings, args.module_url, random_projection_matrix)
| 'Encode to tf example' >> beam.FlatMap(to_tf_example)
| 'Write to TFRecords files' >> beam.io.WriteToTFRecord(
file_path_prefix='{}/emb'.format(args.embed_output_dir),
file_name_suffix='.tfrecords')
)
print('Beam pipeline completed.')
示例9: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def __init__(
self,
module_url,
index_file_path,
mapping_file_path,
dimensions,
random_projection_matrix_file,
):
# Load the TF-Hub module
print('Loading the TF-Hub module...')
self.embed_fn = hub.load(module_url)
print('TF-hub module is loaded.')
dimensions = self.embed_fn(['']).shape[1]
self.random_projection_matrix = None
if tf.io.gfile.exists(random_projection_matrix_file):
with open(random_projection_matrix_file, 'rb') as handle:
self.random_projection_matrix = pickle.load(handle)
dimensions = self.random_projection_matrix.shape[1]
self.index = annoy.AnnoyIndex(dimensions, metric=_METRIC)
self.index.load(index_file_path, prefault=True)
print('Annoy index is loaded.')
with open(mapping_file_path, 'rb') as handle:
self.mapping = pickle.load(handle)
print('Mapping file is loaded.')
示例10: test_empty_input
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def test_empty_input(self):
export.train_and_export(
epoch=1,
dataset=self.mock_dataset,
export_path="%s/model/1" % self.get_temp_dir())
model = hub.load("%s/model/1" % self.get_temp_dir())
output_ = model(tf.zeros([1, 28, 28, 1], dtype=tf.uint8).numpy())
self.assertEqual(output_.shape, [1, 10])
示例11: testEmbeddingLoaded
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def testEmbeddingLoaded(self):
vocabulary, embeddings = export_v2.load(self._embedding_file_path,
export_v2.parse_line,
num_lines_to_ignore=0,
num_lines_to_use=None)
self.assertEqual((3,), np.shape(vocabulary))
self.assertEqual((3, 3), np.shape(embeddings))
示例12: testExportTextEmbeddingModule
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def testExportTextEmbeddingModule(self):
export_v2.export_module_from_file(
embedding_file=self._embedding_file_path,
export_path=self.get_temp_dir(),
num_oov_buckets=1,
num_lines_to_ignore=0,
num_lines_to_use=None)
hub_module = hub.load(self.get_temp_dir())
tokens = tf.constant(["cat", "cat cat", "lizard. dog", "cat? dog", ""])
embeddings = hub_module(tokens)
self.assertAllClose(
embeddings.numpy(),
[[1.11, 2.56, 3.45], [1.57, 3.62, 4.88], [0.70, 1.41, 2.12],
[1.49, 3.22, 4.56], [0.0, 0.0, 0.0]],
rtol=0.02)
示例13: testEmptyInput
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def testEmptyInput(self):
export_v2.export_module_from_file(
embedding_file=self._embedding_file_path,
export_path=self.get_temp_dir(),
num_oov_buckets=1,
num_lines_to_ignore=0,
num_lines_to_use=None)
hub_module = hub.load(self.get_temp_dir())
tokens = tf.constant(["", "", ""])
embeddings = hub_module(tokens)
self.assertAllClose(
embeddings.numpy(), [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
rtol=0.02)
示例14: testEmptyLeading
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def testEmptyLeading(self):
export_v2.export_module_from_file(
embedding_file=self._embedding_file_path,
export_path=self.get_temp_dir(),
num_oov_buckets=1,
num_lines_to_ignore=0,
num_lines_to_use=None)
hub_module = hub.load(self.get_temp_dir())
tokens = tf.constant(["", "cat dog"])
embeddings = hub_module(tokens)
self.assertAllClose(
embeddings.numpy(), [[0.0, 0.0, 0.0], [1.49, 3.22, 4.56]], rtol=0.02)
示例15: testNumLinesUse
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import load [as 別名]
def testNumLinesUse(self):
export_v2.export_module_from_file(
embedding_file=self._embedding_file_path,
export_path=self.get_temp_dir(),
num_oov_buckets=1,
num_lines_to_ignore=0,
num_lines_to_use=2)
hub_module = hub.load(self.get_temp_dir())
tokens = tf.constant(["cat", "dog", "mouse"])
embeddings = hub_module(tokens)
self.assertAllClose(
embeddings.numpy(), [[1.1, 2.56, 3.45], [1, 2, 3], [0, 0, 0]],
rtol=0.02)