當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_hub.add_signature方法代碼示例

本文整理匯總了Python中tensorflow_hub.add_signature方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.add_signature方法的具體用法?Python tensorflow_hub.add_signature怎麽用?Python tensorflow_hub.add_signature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_hub的用法示例。


在下文中一共展示了tensorflow_hub.add_signature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testUnsupportedCollections

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def testUnsupportedCollections(self):

    def module_fn():
      scale = tf_v1.get_variable("x", (), collections=["my_scope"])
      x = tf_v1.placeholder(tf.float32, shape=[None, 3])
      native_module.add_signature("my_func", {"x": x}, {"y": x*scale})

    with self.assertRaises(ValueError) as cm:
      _ = native_module.create_module_spec(module_fn)
      self.assertIn("Unsupported collections in graph", cm)

    with tf.Graph().as_default() as tmp_graph:
      module_fn()
      unsupported_collections = native_module.get_unsupported_collections(
          tmp_graph.get_all_collection_keys())
      self.assertEqual(["my_scope"], unsupported_collections)

    _ = native_module.create_module_spec(
        module_fn, drop_collections=unsupported_collections) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:21,代碼來源:native_module_test.py

示例2: stateful_rv_with_input_module_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def stateful_rv_with_input_module_fn():
  x = tf_v1.placeholder(dtype=tf.float32, name="x")
  # Add a placeholder/variable that doesn't go to an output.
  y = tf_v1.placeholder(dtype=tf.float32, name="y")
  r = tf_v1.get_variable(
      "rv_var123",
      shape=[],
      initializer=tf_v1.constant_initializer(10.0),
      use_resource=True)
  t = tf_v1.get_variable(
      "rv_var456",
      shape=[],
      initializer=tf_v1.constant_initializer(10.0),
      use_resource=True)
  t.assign(y)
  res = x + r
  hub.add_signature(inputs={"x": x}, outputs=res) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:19,代碼來源:native_module_test.py

示例3: layers_module_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def layers_module_fn():
  """Module that exercises the use of layers."""
  # This is a plain linear map Mx+b regularized by the sum of the squares
  # of the coefficients in M and b.
  x = tf_v1.placeholder(dtype=tf.float32, shape=[None, 2], name="x")
  def l2(weights):
    """Applies l2 regularization to weights."""
    with tf.control_dependencies([weights]):
      return 2.0 * tf_v1.nn.l2_loss(weights)

  h = tf_v1.layers.dense(
      x, 2,
      activation=None,
      kernel_regularizer=l2,
      bias_regularizer=l2)
  hub.add_signature(inputs=x, outputs=h) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:18,代碼來源:native_module_test.py

示例4: valid_colocation_module_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def valid_colocation_module_fn():
  w = tf.Variable(42 + 69, name="w")
  # w.op has the same name on resource and non-resource variables
  with tf_v1.colocate_with(w.op):
    # A colocation reference among state nodes is ok.
    v = tf.Variable(1.0, name="v")
    assert v.op.colocation_groups() == [tf.compat.as_bytes("loc:@w")]
    # A colocation reference from other nodes to state nodes is ok.
    y = tf.add(v, 1, name="y")
    assert y.op.colocation_groups() == [tf.compat.as_bytes("loc:@w")]
  x = tf_v1.placeholder(dtype=tf.float32, name="x")
  with tf_v1.colocate_with(x):
    # A colocation reference from other nodes to input nodes is ok.
    z = tf.add(x, 1, name="z")
    assert z.op.colocation_groups() == [tf.compat.as_bytes("loc:@x")]
  hub.add_signature(inputs=dict(x=x), outputs=dict(y=y, z=z)) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:18,代碼來源:native_module_test.py

示例5: testDuplicateAssetCopy

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def testDuplicateAssetCopy(self):
    export_path = os.path.join(self.get_temp_dir(), "assets-module")

    def module_with_duplicate_asset():
      vocabulary_file = self.create_vocab_file("tokens2.txt", ["1", "2", "3"])
      indices1 = tf_v1.placeholder(dtype=tf.int64, name="indices1")
      indices2 = tf_v1.placeholder(dtype=tf.int64, name="indices2")
      hub.add_signature(
          inputs={
              "indices_1": indices1,
              "indices_2": indices2,
          },
          outputs={
              "x": do_table_lookup(indices1, vocabulary_file),
              "y": do_table_lookup(indices2, vocabulary_file),
          })

    with tf.Graph().as_default():
      spec = hub.create_module_spec(module_with_duplicate_asset)
      module_a = hub.Module(spec)
      module_a({"indices_1": tf.constant([1, 2], dtype=tf.int64),
                "indices_2": tf.constant([1, 2], dtype=tf.int64)}, as_dict=True)
      with tf_v1.Session() as sess:
        sess.run(tf_v1.tables_initializer())
        module_a.export(export_path, sess) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:27,代碼來源:native_module_test.py

示例6: text_module_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def text_module_fn():
  embeddings = [
      ("", [0, 0, 0, 0]),  # OOV items are mapped to this embedding.
      ("hello world", [1, 2, 3, 4]),
      ("pair-programming", [5, 5, 5, 5]),
  ]
  keys = tf.constant([item[0] for item in embeddings], dtype=tf.string)
  indices = tf.constant(list(range(len(embeddings))), dtype=tf.int64)
  tbl_init = KeyValueTensorInitializer(keys, indices)
  table = HashTable(tbl_init, 0)

  weights_initializer = tf.cast(
      tf.constant(list([item[1] for item in embeddings])), tf.float32)

  weights = tf_v1.get_variable(
      "weights", dtype=tf.float32, initializer=weights_initializer)

  text_tensor = tf_v1.placeholder(dtype=tf.string, name="text", shape=[None])
  indices_tensor = table.lookup(text_tensor)
  embedding_tensor = tf.gather(weights, indices_tensor)
  hub.add_signature(inputs=text_tensor, outputs=embedding_tensor) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:23,代碼來源:feature_column_test.py

示例7: _save_half_plus_one_hub_module_v1

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def _save_half_plus_one_hub_module_v1(path):
  """Writes TF1.x hub.Module to compute y = wx + 1, with w trainable."""
  def half_plus_one():
    x = tf.compat.v1.placeholder(shape=(None,1), dtype=tf.float32)
    # Use TF1 native tf.compat.v1.layers instead of tf.keras.layers as they
    # correctly update TF collections, such as REGULARIZATION_LOSS.
    times_w = tf.compat.v1.layers.Dense(
        units=1,
        kernel_initializer=tf.keras.initializers.Constant([[0.5]]),
        kernel_regularizer=tf.keras.regularizers.l2(0.01),
        use_bias=False)
    plus_1 = tf.compat.v1.layers.Dense(
        units=1,
        kernel_initializer=tf.keras.initializers.Constant([[1.0]]),
        bias_initializer=tf.keras.initializers.Constant([1.0]),
        trainable=False)
    y = plus_1(times_w(x))
    hub.add_signature(inputs=x, outputs=y)

  spec = hub.create_module_spec(half_plus_one)
  _export_module_spec_with_init_weights(spec, path) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:23,代碼來源:keras_layer_test.py

示例8: apply_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def apply_model(image_fn,  # pylint: disable=missing-docstring
                is_training,
                num_outputs,
                make_signature=False):

  # Image tensor needs to be created lazily in order to satisfy tf-hub
  # restriction: all tensors should be created inside tf-hub helper function.
  images = image_fn()

  net = get_net(num_classes=num_outputs)

  output, end_points = net(images, is_training)

  if make_signature:
    hub.add_signature(inputs={'image': images}, outputs=output)
    hub.add_signature(inputs={'image': images}, outputs=end_points,
                      name='representation')
  return output 
開發者ID:google,項目名稱:revisiting-self-supervised,代碼行數:20,代碼來源:supervised.py

示例9: apply_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def apply_model(image_fn,  # pylint: disable=missing-docstring
                is_training,
                num_outputs,
                make_signature=False):

  # Image tensor needs to be created lazily in order to satisfy tf-hub
  # restriction: all tensors should be created inside tf-hub helper function.
  images = image_fn()

  net = get_net(num_classes=num_outputs)

  output, end_points = net(images, is_training)

  if make_signature:
    hub.add_signature(inputs={'image': images}, outputs=output)
    hub.add_signature(
        name='representation',
        inputs={'image': images},
        outputs=end_points)
  return output 
開發者ID:google,項目名稱:revisiting-self-supervised,代碼行數:22,代碼來源:rotation.py

示例10: make_module_spec_for_testing

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def make_module_spec_for_testing(input_image_height=289,
                                 input_image_width=289,
                                 output_feature_dim=64):
  """Makes a stub image feature module for use in `TFImageProcessor` tests.

  The resulting module has the signature expected by `TFImageProcessor`, but it
  has no trainable variables and its initialization loads nothing from disk.

  Args:
    input_image_height: int, height of the module's input images.
    input_image_width: int, width of module's input images.
    output_feature_dim: int, dimension of the output feature vectors.

  Returns:
    `hub.ModuleSpec`
  """

  def module_fn():
    """Builds the graph and signature for the stub TF-hub module."""
    image_data = tf.placeholder(
        shape=[1, input_image_height, input_image_width, 3], dtype=tf.float32)
    # Linearly project image_data to shape [1, output_feature_dim] features.
    projection_matrix = tf.ones([tf.size(image_data), output_feature_dim],
                                dtype=tf.float32)
    encoder_output = tf.matmul(
        tf.reshape(image_data, [1, -1]), projection_matrix)
    # NB: the input feature must be named 'images' to satisfy
    # hub.image_util.get_expected_image_size().
    hub.add_signature(
        'default', inputs={'images': image_data}, outputs=encoder_output)

  return hub.create_module_spec(module_fn) 
開發者ID:google-research,項目名稱:valan,代碼行數:34,代碼來源:tf_image_processor.py

示例11: create_dummy_hub_module

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def create_dummy_hub_module(num_outputs):
  """Creates minimal hub module for testing purposes."""

  def module_fn(is_training):
    x = tf.placeholder(dtype=tf.float32, shape=[32, 224, 224, 3])
    h = tf.reduce_mean(x, axis=[1, 2])
    if is_training:
      h = tf.nn.dropout(h, 0.5)
    y = tf.layers.dense(h, num_outputs)
    hub.add_signature(inputs=x, outputs={"pre_logits": h, "logits": y})

  return hub.create_module_spec(
      module_fn,
      tags_and_args=[({"train"}, {"is_training": True}),
                     (set(), {"is_training": False})]) 
開發者ID:google-research,項目名稱:task_adaptation,代碼行數:17,代碼來源:test_utils.py

示例12: _stateless_module_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def _stateless_module_fn(self):
    """Simple module that squares an input."""
    x = tf_v1.placeholder(tf.int64)
    y = x*x
    hub.add_signature(inputs=x, outputs=y) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:7,代碼來源:e2e_test.py

示例13: test_module_export_vocab_on_custom_fs

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def test_module_export_vocab_on_custom_fs(self):
    root_dir = "file://%s" % self.get_temp_dir()
    export_dir = "%s_%s" % (root_dir, "export")
    tf_v1.gfile.MakeDirs(export_dir)
    # Create a module with a vocab file located on a custom filesystem.
    vocab_dir = os.path.join(root_dir, "vocab_location")
    tf_v1.gfile.MakeDirs(vocab_dir)
    vocab_filename = os.path.join(vocab_dir, "tokens.txt")
    tf_utils.atomic_write_string_to_file(vocab_filename, "one", False)

    def create_assets_module_fn():

      def assets_module_fn():
        indices = tf_v1.placeholder(dtype=tf.int64, name="indices")
        table = index_to_string_table_from_file(
            vocabulary_file=vocab_filename, default_value="UNKNOWN")
        outputs = table.lookup(indices)
        hub.add_signature(inputs=indices, outputs=outputs)

      return assets_module_fn

    with tf.Graph().as_default():
      assets_module_fn = create_assets_module_fn()
      spec = hub.create_module_spec(assets_module_fn)
      embedding_module = hub.Module(spec)
      with tf_v1.Session() as sess:
        sess.run(tf_v1.tables_initializer())
        embedding_module.export(export_dir, sess)

    module_files = tf_v1.gfile.ListDirectory(export_dir)
    self.assertListEqual(
        ["assets", "saved_model.pb", "tfhub_module.pb", "variables"],
        sorted(module_files))
    module_files = tf_v1.gfile.ListDirectory(os.path.join(export_dir, "assets"))
    self.assertListEqual(["tokens.txt"], module_files) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:37,代碼來源:e2e_test.py

示例14: _save_plus_one_hub_module_v1

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def _save_plus_one_hub_module_v1(path):

  def plus_one():
    x = tf.compat.v1.placeholder(dtype=tf.float32, name='x')
    y = x + 1
    hub.add_signature(inputs=x, outputs=y)

  spec = hub.create_module_spec(plus_one)

  with tf.compat.v1.Graph().as_default():
    module = hub.Module(spec, trainable=True)
    with tf.compat.v1.Session() as session:
      session.run(tf.compat.v1.global_variables_initializer())
      module.export(path, session) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:16,代碼來源:module_v2_test.py

示例15: multi_signature_module

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import add_signature [as 別名]
def multi_signature_module():
  x = tf_v1.placeholder(tf.float32, shape=[None])
  native_module.add_signature("double", {"x": x}, {"y": 2*x})

  z = tf_v1.placeholder(tf.float32, shape=[None])
  native_module.add_signature("square", {"z": z}, {"z_out": z*z}) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:8,代碼來源:native_module_test.py


注:本文中的tensorflow_hub.add_signature方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。