本文整理匯總了Python中tensorflow_hub.ModuleSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.ModuleSpec方法的具體用法?Python tensorflow_hub.ModuleSpec怎麽用?Python tensorflow_hub.ModuleSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow_hub
的用法示例。
在下文中一共展示了tensorflow_hub.ModuleSpec方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_module_graph
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def create_module_graph(module_spec):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
height, width = hub.get_expected_image_size(module_spec)
with tf.Graph().as_default() as graph:
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
m = hub.Module(module_spec)
bottleneck_tensor = m(resized_input_tensor)
wants_quantization = any(node.op in FAKE_QUANT_OPS
for node in graph.as_graph_def().node)
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
示例2: add_jpeg_decoding
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def add_jpeg_decoding(module_spec):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
module_spec: The hub.ModuleSpec for the image module being used.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
input_height, input_width = hub.get_expected_image_size(module_spec)
input_depth = hub.get_num_image_channels(module_spec)
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
# Convert from full range of uint8 to range [0,1] of float32.
decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
return jpeg_data, resized_image
示例3: export_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
"""Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
"""
# The SavedModel should hold the eval graph.
sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
with sess.graph.as_default() as graph:
tf.saved_model.simple_save(
sess,
saved_model_dir,
inputs={'image': in_image},
outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
)
示例4: export_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir, model_version):
"""Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
"""
# The SavedModel should hold the eval graph.
sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
with sess.graph.as_default() as graph:
output_path = os.path.join(
tf.compat.as_bytes(saved_model_dir),
tf.compat.as_bytes(str(model_version)))
tf.saved_model.simple_save(
sess,
output_path,
inputs={'image': in_image},
outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
)
示例5: create_module_graph
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def create_module_graph(module_spec):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
height, width = hub.get_expected_image_size(module_spec)
with tf.Graph().as_default() as graph:
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
m = hub.Module(module_spec)
bottleneck_tensor = m(resized_input_tensor)
wants_quantization = any(node.op in FAKE_QUANT_OPS
for node in graph.as_graph_def().node)
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
示例6: add_jpeg_decoding
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def add_jpeg_decoding(module_spec):
"""Adds operations that perform JPEG decoding and resizing to the graph..
Args:
module_spec: The hub.ModuleSpec for the image module being used.
Returns:
Tensors for the node to feed JPEG data into, and the output of the
preprocessing steps.
"""
input_height, input_width = hub.get_expected_image_size(module_spec)
input_depth = hub.get_num_image_channels(module_spec)
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
# Convert from full range of uint8 to range [0,1] of float32.
decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
resize_shape = tf.stack([input_height, input_width])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
resized_image = tf.image.resize_bilinear(decoded_image_4d,
resize_shape_as_int)
return jpeg_data, resized_image
示例7: run_final_eval
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def run_final_eval(train_session, module_spec, class_count, image_lists,
jpeg_data_tensor, decoded_image_tensor,
resized_image_tensor, bottleneck_tensor):
"""Runs a final evaluation on an eval graph using the test data set.
Args:
train_session: Session for the train graph with the tensors below.
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
image_lists: OrderedDict of training images for each label.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_image_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
"""
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(train_session, image_lists,
FLAGS.test_batch_size,
'testing', FLAGS.bottleneck_dir,
FLAGS.image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor,
bottleneck_tensor, FLAGS.tfhub_module))
(eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
prediction) = build_eval_session(module_spec, class_count)
test_accuracy, predictions = eval_session.run(
[evaluation_step, prediction],
feed_dict={
bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth
})
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
(test_accuracy * 100, len(test_bottlenecks)))
if FLAGS.print_misclassified_test_images:
tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i]:
tf.logging.info('%70s %s' % (test_filename,
list(image_lists.keys())[predictions[i]]))
示例8: build_eval_session
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def build_eval_session(module_spec, class_count):
"""Builds an restored eval session without train operations for exporting.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
Returns:
Eval session containing the restored eval graph.
The bottleneck input, ground truth, eval step, and prediction tensors.
"""
# If quantized, we need to create the correct eval graph for exporting.
eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = (
create_module_graph(module_spec))
eval_sess = tf.Session(graph=eval_graph)
with eval_graph.as_default():
# Add the new layer for exporting.
(_, _, bottleneck_input,
ground_truth_input, final_tensor) = add_final_retrain_ops(
class_count, FLAGS.final_tensor_name, bottleneck_tensor,
wants_quantization, is_training=False)
# Now we need to restore the values from the training graph to the eval
# graph.
tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME)
evaluation_step, prediction = add_evaluation_step(final_tensor,
ground_truth_input)
return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
evaluation_step, prediction)
示例9: run_final_eval
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def run_final_eval(train_session, module_spec, class_count, image_lists,
jpeg_data_tensor, decoded_image_tensor,
resized_image_tensor, bottleneck_tensor):
"""Runs a final evaluation on an eval graph using the test data set.
Args:
train_session: Session for the train graph with the tensors below.
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
image_lists: OrderedDict of training images for each label.
jpeg_data_tensor: The layer to feed jpeg image data into.
decoded_image_tensor: The output of decoding and resizing the image.
resized_image_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
"""
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(train_session, image_lists,
FLAGS.test_batch_size,
'testing', FLAGS.bottleneck_dir,
FLAGS.image_dir, jpeg_data_tensor,
decoded_image_tensor, resized_image_tensor,
bottleneck_tensor, FLAGS.tfhub_module))
(eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
prediction) = build_eval_session(module_spec, class_count)
test_accuracy, predictions = eval_session.run(
[evaluation_step, prediction],
feed_dict={
bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth
})
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
(test_accuracy * 100, len(test_bottlenecks)))
if FLAGS.print_misclassified_test_images:
tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i]:
tf.logging.info('%70s %s' % (test_filename,
list(image_lists.keys())[predictions[i]]))
示例10: build_eval_session
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def build_eval_session(module_spec, class_count):
"""Builds an restored eval session without train operations for exporting.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: Number of classes
Returns:
Eval session containing the restored eval graph.
The bottleneck input, ground truth, eval step, and prediction tensors.
"""
# If quantized, we need to create the correct eval graph for exporting.
eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = (
create_module_graph(module_spec))
eval_sess = tf.Session(graph=eval_graph)
with eval_graph.as_default():
# Add the new layer for exporting.
(_, _, bottleneck_input,
ground_truth_input, final_tensor) = add_final_retrain_ops(
class_count, FLAGS.final_tensor_name, bottleneck_tensor,
wants_quantization, is_training=False)
# Now we need to restore the values from the training graph to the eval
# graph.
tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME)
evaluation_step, prediction = add_evaluation_step(final_tensor,
ground_truth_input)
return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
evaluation_step, prediction)
示例11: export_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
"""Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
"""
# The SavedModel should hold the eval graph.
sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
graph = sess.graph
with graph.as_default():
inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}
out_classes = sess.graph.get_tensor_by_name('final_result:0')
outputs = {
'prediction': tf.saved_model.utils.build_tensor_info(out_classes)
}
signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs=inputs,
outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
# Save out the SavedModel.
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature
},
legacy_init_op=legacy_init_op)
builder.save()
示例12: export_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
"""Exports model for serving.
Args:
module_spec: The hub.ModuleSpec for the image module being used.
class_count: The number of classes.
saved_model_dir: Directory in which to save exported model and variables.
"""
# The SavedModel should hold the eval graph.
sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
graph = sess.graph
with graph.as_default():
inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}
out_classes = sess.graph.get_tensor_by_name('final_result:0')
outputs = {
'prediction': tf.saved_model.utils.build_tensor_info(out_classes)
}
signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs=inputs,
outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
# Save out the SavedModel.
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature
},
legacy_init_op=legacy_init_op)
builder.save()