當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_hub.ModuleSpec方法代碼示例

本文整理匯總了Python中tensorflow_hub.ModuleSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.ModuleSpec方法的具體用法?Python tensorflow_hub.ModuleSpec怎麽用?Python tensorflow_hub.ModuleSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_hub的用法示例。


在下文中一共展示了tensorflow_hub.ModuleSpec方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_module_graph

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def create_module_graph(module_spec):
  """Creates a graph and loads Hub Module into it.

  Args:
    module_spec: the hub.ModuleSpec for the image module being used.

  Returns:
    graph: the tf.Graph that was created.
    bottleneck_tensor: the bottleneck values output by the module.
    resized_input_tensor: the input images, resized as expected by the module.
    wants_quantization: a boolean, whether the module has been instrumented
      with fake quantization ops.
  """
  height, width = hub.get_expected_image_size(module_spec)
  with tf.Graph().as_default() as graph:
    resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
    m = hub.Module(module_spec)
    bottleneck_tensor = m(resized_input_tensor)
    wants_quantization = any(node.op in FAKE_QUANT_OPS
                             for node in graph.as_graph_def().node)
  return graph, bottleneck_tensor, resized_input_tensor, wants_quantization 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:23,代碼來源:retrain.py

示例2: add_jpeg_decoding

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def add_jpeg_decoding(module_spec):
  """Adds operations that perform JPEG decoding and resizing to the graph..

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.

  Returns:
    Tensors for the node to feed JPEG data into, and the output of the
      preprocessing steps.
  """
  input_height, input_width = hub.get_expected_image_size(module_spec)
  input_depth = hub.get_num_image_channels(module_spec)
  jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
  decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
  # Convert from full range of uint8 to range [0,1] of float32.
  decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
                                                        tf.float32)
  decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
  resize_shape = tf.stack([input_height, input_width])
  resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
  resized_image = tf.image.resize_bilinear(decoded_image_4d,
                                           resize_shape_as_int)
  return jpeg_data, resized_image 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:25,代碼來源:retrain.py

示例3: export_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
  """Exports model for serving.

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: The number of classes.
    saved_model_dir: Directory in which to save exported model and variables.
  """
  # The SavedModel should hold the eval graph.
  sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
  with sess.graph.as_default() as graph:
    tf.saved_model.simple_save(
        sess,
        saved_model_dir,
        inputs={'image': in_image},
        outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
        legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
    ) 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:20,代碼來源:retrain.py

示例4: export_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir, model_version):
  """Exports model for serving.

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: The number of classes.
    saved_model_dir: Directory in which to save exported model and variables.
  """
  # The SavedModel should hold the eval graph.
  sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
  with sess.graph.as_default() as graph:
    output_path = os.path.join(
      tf.compat.as_bytes(saved_model_dir),
      tf.compat.as_bytes(str(model_version)))
    tf.saved_model.simple_save(
        sess,
        output_path,
        inputs={'image': in_image},
        outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
        legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
    ) 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:23,代碼來源:retrain.py

示例5: create_module_graph

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def create_module_graph(module_spec):
    """Creates a graph and loads Hub Module into it.

    Args:
      module_spec: the hub.ModuleSpec for the image module being used.

    Returns:
      graph: the tf.Graph that was created.
      bottleneck_tensor: the bottleneck values output by the module.
      resized_input_tensor: the input images, resized as expected by the module.
      wants_quantization: a boolean, whether the module has been instrumented
        with fake quantization ops.
    """
    height, width = hub.get_expected_image_size(module_spec)
    with tf.Graph().as_default() as graph:
        resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
        m = hub.Module(module_spec)
        bottleneck_tensor = m(resized_input_tensor)
        wants_quantization = any(node.op in FAKE_QUANT_OPS
                                 for node in graph.as_graph_def().node)
    return graph, bottleneck_tensor, resized_input_tensor, wants_quantization 
開發者ID:joelbarmettlerUZH,項目名稱:FaceClassification_Tensorflow,代碼行數:23,代碼來源:retrain.py

示例6: add_jpeg_decoding

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def add_jpeg_decoding(module_spec):
    """Adds operations that perform JPEG decoding and resizing to the graph..

    Args:
      module_spec: The hub.ModuleSpec for the image module being used.

    Returns:
      Tensors for the node to feed JPEG data into, and the output of the
        preprocessing steps.
    """
    input_height, input_width = hub.get_expected_image_size(module_spec)
    input_depth = hub.get_num_image_channels(module_spec)
    jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
    decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
    # Convert from full range of uint8 to range [0,1] of float32.
    decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
                                                          tf.float32)
    decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
    resize_shape = tf.stack([input_height, input_width])
    resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
    resized_image = tf.image.resize_bilinear(decoded_image_4d,
                                             resize_shape_as_int)
    return jpeg_data, resized_image 
開發者ID:joelbarmettlerUZH,項目名稱:FaceClassification_Tensorflow,代碼行數:25,代碼來源:retrain.py

示例7: run_final_eval

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def run_final_eval(train_session, module_spec, class_count, image_lists,
                   jpeg_data_tensor, decoded_image_tensor,
                   resized_image_tensor, bottleneck_tensor):
  """Runs a final evaluation on an eval graph using the test data set.

  Args:
    train_session: Session for the train graph with the tensors below.
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: Number of classes
    image_lists: OrderedDict of training images for each label.
    jpeg_data_tensor: The layer to feed jpeg image data into.
    decoded_image_tensor: The output of decoding and resizing the image.
    resized_image_tensor: The input node of the recognition graph.
    bottleneck_tensor: The bottleneck output layer of the CNN graph.
  """
  test_bottlenecks, test_ground_truth, test_filenames = (
      get_random_cached_bottlenecks(train_session, image_lists,
                                    FLAGS.test_batch_size,
                                    'testing', FLAGS.bottleneck_dir,
                                    FLAGS.image_dir, jpeg_data_tensor,
                                    decoded_image_tensor, resized_image_tensor,
                                    bottleneck_tensor, FLAGS.tfhub_module))

  (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
   prediction) = build_eval_session(module_spec, class_count)
  test_accuracy, predictions = eval_session.run(
      [evaluation_step, prediction],
      feed_dict={
          bottleneck_input: test_bottlenecks,
          ground_truth_input: test_ground_truth
      })
  tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
                  (test_accuracy * 100, len(test_bottlenecks)))

  if FLAGS.print_misclassified_test_images:
    tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
    for i, test_filename in enumerate(test_filenames):
      if predictions[i] != test_ground_truth[i]:
        tf.logging.info('%70s  %s' % (test_filename,
                                      list(image_lists.keys())[predictions[i]])) 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:42,代碼來源:retrain.py

示例8: build_eval_session

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def build_eval_session(module_spec, class_count):
  """Builds an restored eval session without train operations for exporting.

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: Number of classes

  Returns:
    Eval session containing the restored eval graph.
    The bottleneck input, ground truth, eval step, and prediction tensors.
  """
  # If quantized, we need to create the correct eval graph for exporting.
  eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = (
      create_module_graph(module_spec))

  eval_sess = tf.Session(graph=eval_graph)
  with eval_graph.as_default():
    # Add the new layer for exporting.
    (_, _, bottleneck_input,
     ground_truth_input, final_tensor) = add_final_retrain_ops(
         class_count, FLAGS.final_tensor_name, bottleneck_tensor,
         wants_quantization, is_training=False)

    # Now we need to restore the values from the training graph to the eval
    # graph.
    tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME)

    evaluation_step, prediction = add_evaluation_step(final_tensor,
                                                      ground_truth_input)

  return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
          evaluation_step, prediction) 
開發者ID:hthuwal,項目名稱:sign-language-gesture-recognition,代碼行數:34,代碼來源:retrain.py

示例9: run_final_eval

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def run_final_eval(train_session, module_spec, class_count, image_lists,
                   jpeg_data_tensor, decoded_image_tensor,
                   resized_image_tensor, bottleneck_tensor):
    """Runs a final evaluation on an eval graph using the test data set.

    Args:
      train_session: Session for the train graph with the tensors below.
      module_spec: The hub.ModuleSpec for the image module being used.
      class_count: Number of classes
      image_lists: OrderedDict of training images for each label.
      jpeg_data_tensor: The layer to feed jpeg image data into.
      decoded_image_tensor: The output of decoding and resizing the image.
      resized_image_tensor: The input node of the recognition graph.
      bottleneck_tensor: The bottleneck output layer of the CNN graph.
    """
    test_bottlenecks, test_ground_truth, test_filenames = (
        get_random_cached_bottlenecks(train_session, image_lists,
                                      FLAGS.test_batch_size,
                                      'testing', FLAGS.bottleneck_dir,
                                      FLAGS.image_dir, jpeg_data_tensor,
                                      decoded_image_tensor, resized_image_tensor,
                                      bottleneck_tensor, FLAGS.tfhub_module))

    (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
     prediction) = build_eval_session(module_spec, class_count)
    test_accuracy, predictions = eval_session.run(
        [evaluation_step, prediction],
        feed_dict={
            bottleneck_input: test_bottlenecks,
            ground_truth_input: test_ground_truth
        })
    tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
                    (test_accuracy * 100, len(test_bottlenecks)))

    if FLAGS.print_misclassified_test_images:
        tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
        for i, test_filename in enumerate(test_filenames):
            if predictions[i] != test_ground_truth[i]:
                tf.logging.info('%70s  %s' % (test_filename,
                                              list(image_lists.keys())[predictions[i]])) 
開發者ID:joelbarmettlerUZH,項目名稱:FaceClassification_Tensorflow,代碼行數:42,代碼來源:retrain.py

示例10: build_eval_session

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def build_eval_session(module_spec, class_count):
    """Builds an restored eval session without train operations for exporting.

    Args:
      module_spec: The hub.ModuleSpec for the image module being used.
      class_count: Number of classes

    Returns:
      Eval session containing the restored eval graph.
      The bottleneck input, ground truth, eval step, and prediction tensors.
    """
    # If quantized, we need to create the correct eval graph for exporting.
    eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = (
        create_module_graph(module_spec))

    eval_sess = tf.Session(graph=eval_graph)
    with eval_graph.as_default():
        # Add the new layer for exporting.
        (_, _, bottleneck_input,
         ground_truth_input, final_tensor) = add_final_retrain_ops(
            class_count, FLAGS.final_tensor_name, bottleneck_tensor,
            wants_quantization, is_training=False)

        # Now we need to restore the values from the training graph to the eval
        # graph.
        tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME)

        evaluation_step, prediction = add_evaluation_step(final_tensor,
                                                          ground_truth_input)

    return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
            evaluation_step, prediction) 
開發者ID:joelbarmettlerUZH,項目名稱:FaceClassification_Tensorflow,代碼行數:34,代碼來源:retrain.py

示例11: export_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
    """Exports model for serving.

    Args:
      module_spec: The hub.ModuleSpec for the image module being used.
      class_count: The number of classes.
      saved_model_dir: Directory in which to save exported model and variables.
    """
    # The SavedModel should hold the eval graph.
    sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
    graph = sess.graph
    with graph.as_default():
        inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}

        out_classes = sess.graph.get_tensor_by_name('final_result:0')
        outputs = {
            'prediction': tf.saved_model.utils.build_tensor_info(out_classes)
        }

        signature = tf.saved_model.signature_def_utils.build_signature_def(
            inputs=inputs,
            outputs=outputs,
            method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)

        legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')

        # Save out the SavedModel.
        builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
        builder.add_meta_graph_and_variables(
            sess, [tf.saved_model.tag_constants.SERVING],
            signature_def_map={
                tf.saved_model.signature_constants.
                    DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                    signature
            },
            legacy_init_op=legacy_init_op)
        builder.save() 
開發者ID:joelbarmettlerUZH,項目名稱:FaceClassification_Tensorflow,代碼行數:39,代碼來源:retrain.py

示例12: export_model

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import ModuleSpec [as 別名]
def export_model(module_spec, class_count, saved_model_dir):
  """Exports model for serving.

  Args:
    module_spec: The hub.ModuleSpec for the image module being used.
    class_count: The number of classes.
    saved_model_dir: Directory in which to save exported model and variables.
  """
  # The SavedModel should hold the eval graph.
  sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
  graph = sess.graph
  with graph.as_default():
    inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}

    out_classes = sess.graph.get_tensor_by_name('final_result:0')
    outputs = {
        'prediction': tf.saved_model.utils.build_tensor_info(out_classes)
    }

    signature = tf.saved_model.signature_def_utils.build_signature_def(
        inputs=inputs,
        outputs=outputs,
        method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)

    legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')

    # Save out the SavedModel.
    builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
    builder.add_meta_graph_and_variables(
        sess, [tf.saved_model.tag_constants.SERVING],
        signature_def_map={
            tf.saved_model.signature_constants.
            DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                signature
        },
        legacy_init_op=legacy_init_op)
    builder.save() 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:39,代碼來源:retrain_v2.py


注:本文中的tensorflow_hub.ModuleSpec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。