本文整理匯總了Python中tensorflow_hub.Module方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.Module方法的具體用法?Python tensorflow_hub.Module怎麽用?Python tensorflow_hub.Module使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow_hub
的用法示例。
在下文中一共展示了tensorflow_hub.Module方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_module_graph
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def create_module_graph(module_spec):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
height, width = hub.get_expected_image_size(module_spec)
with tf.Graph().as_default() as graph:
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
m = hub.Module(module_spec)
bottleneck_tensor = m(resized_input_tensor)
wants_quantization = any(node.op in FAKE_QUANT_OPS
for node in graph.as_graph_def().node)
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
示例2: export_module_spec_with_checkpoint
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def export_module_spec_with_checkpoint(module_spec,
checkpoint_path,
export_path,
scope_prefix=""):
"""Exports given checkpoint as tfhub module with given spec."""
# The main requirement is that it is possible to know how to map from
# module variable name to checkpoint variable name.
# This is trivial if the original code used variable scopes,
# but can be messy if the variables to export are interwined
# with variables not export.
with tf.Graph().as_default():
m = hub.Module(module_spec)
assign_map = {
scope_prefix + name: value for name, value in m.variable_map.items()
}
tf.train.init_from_checkpoint(checkpoint_path, assign_map)
init_op = tf.initializers.global_variables()
with tf.Session() as session:
session.run(init_op)
m.export(export_path, session)
示例3: from_hub_module
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def from_hub_module(cls, hub_module, use_spm=True):
"""Get the vocab file and casing info from the Hub module."""
with tf.Graph().as_default():
albert_module = hub.Module(hub_module)
tokenization_info = albert_module(signature="tokenization_info",
as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run(
[tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
if use_spm:
spm_model_file = vocab_file
vocab_file = None
return FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case,
spm_model_file=spm_model_file)
示例4: _create_model_from_hub
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def _create_model_from_hub(hub_module, is_training, input_ids, input_mask,
segment_ids):
"""Creates an ALBERT model from TF-Hub."""
tags = set()
if is_training:
tags.add("train")
albert_module = hub.Module(hub_module, tags=tags, trainable=True)
albert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
albert_outputs = albert_module(
inputs=albert_inputs,
signature="tokens",
as_dict=True)
return (albert_outputs["pooled_output"], albert_outputs["sequence_output"])
示例5: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def __init__(self, uri, batch_size=100):
"""Create a new UseEncoderClient object
Args:
uri: The uri to the tensorflow_hub USE module
batch_size: maximum number of sentences to encode at once
"""
self._batch_size = batch_size
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tf_hub.Module(uri)
self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string)
self._embeddings = embed_fn(self._fed_texts)
encoding_info = embed_fn.get_output_info_dict().get('default')
if encoding_info:
self._encoding_dim = encoding_info.get_shape()[-1].value
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
示例6: load_model
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def load_model(self, model: str, model_path: str, max_seq_length: int):
g = tf.Graph()
with g.as_default():
hub_module = hub.Module(model_path)
self.tokens = tf.placeholder(dtype=tf.string, shape=[None, max_seq_length])
self.sequence_len = tf.placeholder(dtype=tf.int32, shape=[None])
elmo_inputs = dict(
tokens=self.tokens,
sequence_len=self.sequence_len
)
self.elmo_outputs = hub_module(elmo_inputs, signature="tokens", as_dict=True)
init_op = tf.group([tf.global_variables_initializer()])
g.finalize()
self.sess = tf.Session(graph=g)
self.sess.run(init_op)
self.model_name = model
self.max_seq_length = max_seq_length
示例7: create_module_graph
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def create_module_graph(module_spec):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
height, width = hub.get_expected_image_size(module_spec)
with tf.Graph().as_default() as graph:
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
m = hub.Module(module_spec)
bottleneck_tensor = m(resized_input_tensor)
wants_quantization = any(node.op in FAKE_QUANT_OPS
for node in graph.as_graph_def().node)
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
示例8: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def __init__(self):
logging.info('Initialising embedding utility...')
embed_module = hub.Module(MODULE_URL)
placeholder = tf.placeholder(dtype=tf.string)
embed = embed_module(placeholder)
session = tf.Session()
session.run([tf.global_variables_initializer(), tf.tables_initializer()])
logging.info('tf.Hub module is loaded.')
def _embeddings_fn(sentences):
computed_embeddings = session.run(
embed, feed_dict={placeholder: sentences})
return computed_embeddings
self.embedding_fn = _embeddings_fn
logging.info('Embedding utility initialised.')
示例9: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def __init__(self, hub_path=gin.REQUIRED, name="HubEmbedding", **kwargs):
"""Constructs a HubEmbedding.
Args:
hub_path: Path to the TFHub module.
name: String with the name of the model.
**kwargs: Other keyword arguments passed to tf.keras.Model.
"""
super(HubEmbedding, self).__init__(name=name, **kwargs)
def _embedder(x):
embedder_module = hub.Module(hub_path)
return embedder_module(dict(images=x), signature="representation")
self.embedding_layer = relational_layers.MultiDimBatchApply(
tf.keras.layers.Lambda(_embedder))
示例10: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def __init__(self,
model_path=None,
batch_size=32):
self.resources_dir = os.path.join(os.path.dirname(__file__), 'resources')
if model_path is None:
model_path = os.path.join('pretrained_USE', '1fb57c3ffe1a38479233ee9853ddd7a8ac8a8c47')
if os.path.exists(os.path.join(self.resources_dir, model_path)):
self.url = os.path.join(self.resources_dir, model_path)
else:
os.environ['TFHUB_CACHE_DIR'] = os.path.join(self.resources_dir, 'pretrained_USE')
self.url = "https://tfhub.dev/google/universal-sentence-encoder/2"
# load the use model from saved location or tensorflow hub
self.embed = hub.Module(self.url, trainable=True)
self.sess = tf.Session()
self.epochs = 10
self.lr = 0.01
self.batch_size = batch_size
self.sess.run([tf.global_variables_initializer(),
tf.tables_initializer()])
示例11: __init__
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def __init__(self, uri):
"""Create a new `USEDualEncoder` object."""
self._session = tf.Session(graph=tf.Graph())
with self._session.graph.as_default():
glog.info("Loading %s model from tensorflow hub", uri)
embed_fn = tensorflow_hub.Module(uri)
self._fed_texts = tf.placeholder(shape=[None], dtype=tf.string)
self._context_embeddings = embed_fn(
dict(input=self._fed_texts),
signature="question_encoder",
as_dict=True,
)['outputs']
empty_strings = tf.fill(
tf.shape(self._fed_texts), ""
)
self._response_embeddings = embed_fn(
dict(input=self._fed_texts, context=empty_strings),
signature="response_encoder",
as_dict=True,
)['outputs']
init_ops = (
tf.global_variables_initializer(), tf.tables_initializer())
glog.info("Initializing graph.")
self._session.run(init_ops)
示例12: _run_elmo
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def _run_elmo():
### embedding_file = "https://tfhub.dev/google/elmo/2"
elmo = hub.Module(embedding_file, trainable=True)
words = [word.strip().split()[0] for word in open(vocab_file).readlines()]
gpu_options = tf.GPUOptions(allow_growth=True)
session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
fw = open(out_file, 'w')
fw.write('{} {}\n'.format(len(words), emb_dim))
batch_size = 4096
with tf.Session(config=session_config) as sess:
i = 0
while i < len(words):
print('batch {}/{}...'.format(i/batch_size, len(words)/batch_size))
_words = [words[i:(i+batch_size)]]
embeddings = elmo(
inputs={
"tokens": _words,
"sequence_len": [1]*len(_words)
},
signature="tokens",
as_dict=True)["elmo"]
sess.run(tf.global_variables_initializer())
_emb = sess.run([embeddings])[0][0]
for word, emb in zip(_words[0], np.array(_emb)):
fw.write('{} {}\n'.format(word, ' '.join([str(_) for _ in emb])))
i += batch_size
fw.close()
示例13: create_tokenizer_from_hub_module
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def create_tokenizer_from_hub_module():
"""Get the vocab file and casing info from the Hub module."""
with tf.Graph().as_default():
bert_module = hub.Module(BERT_MODEL_HUB)
tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
return FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case)
示例14: create_tokenizer_from_hub_module
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def create_tokenizer_from_hub_module(bert_hub_module_handle):
"""Get the vocab file and casing info from the Hub module."""
with tf.Graph().as_default():
bert_module = hub.Module(bert_hub_module_handle)
tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
return tokenization.FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case)
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:12,代碼來源:run_classifier_with_tfhub.py
示例15: from_hub_module
# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import Module [as 別名]
def from_hub_module(cls, hub_module, spm_model_file):
"""Get the vocab file and casing info from the Hub module."""
import tensorflow_hub as hub
with tf.Graph().as_default():
albert_module = hub.Module(hub_module)
tokenization_info = albert_module(signature="tokenization_info",
as_dict=True)
with tf.Session() as sess:
vocab_file, do_lower_case = sess.run(
[tokenization_info["vocab_file"],
tokenization_info["do_lower_case"]])
return FullTokenizer(
vocab_file=vocab_file, do_lower_case=do_lower_case,
spm_model_file=spm_model_file)