當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_hub.KerasLayer方法代碼示例

本文整理匯總了Python中tensorflow_hub.KerasLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_hub.KerasLayer方法的具體用法?Python tensorflow_hub.KerasLayer怎麽用?Python tensorflow_hub.KerasLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_hub的用法示例。


在下文中一共展示了tensorflow_hub.KerasLayer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def __init__(
        self,
        input_shape=(224, 224, 3),
        model_url='https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4',
        labels_url='https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt',
        trainable=False
    ):

        self.model_url = model_url
        self.input_shape = input_shape
        self.labels_url = labels_url

        self.model = hub.KerasLayer(
            model_url, input_shape=input_shape, trainable=trainable)
        self.classifier = tf.keras.Sequential([self.model])

        labels_filename = labels_url.split(
            '/')[-1]
        labels_path = tf.keras.utils.get_file(labels_filename, labels_url)
        self.labels = np.array(open(labels_path).read().splitlines()) 
開發者ID:leigh-johnson,項目名稱:rpi-vision,代碼行數:22,代碼來源:tfhub.py

示例2: testRegularizationLoss

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testRegularizationLoss(self, model_format):
    export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
    _dispatch_model_format(model_format, _save_half_plus_one_model,
                           _save_half_plus_one_hub_module_v1, export_dir)
    # Import the half-plus-one model into a consumer model.
    inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    imported = hub.KerasLayer(export_dir, trainable=False)
    outp = imported(inp)
    model = tf.keras.Model(inp, outp)
    # When untrainable, the layer does not contribute regularization losses.
    self.assertAllEqual(model.losses, np.array([0.], dtype=np.float32))
    # When trainable (even set after the fact), the layer forwards its losses.
    imported.trainable = True
    self.assertAllEqual(model.losses, np.array([0.0025], dtype=np.float32))
    # This can be toggled repeatedly.
    imported.trainable = False
    self.assertAllEqual(model.losses, np.array([0.], dtype=np.float32))
    imported.trainable = True
    self.assertAllEqual(model.losses, np.array([0.0025], dtype=np.float32)) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:21,代碼來源:keras_layer_test.py

示例3: _output_shape_list_model_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def _output_shape_list_model_fn(self, features, labels, mode, params):
    inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    kwargs = {}
    if "output_shape" in params:
      kwargs["output_shape"] = params["output_shape"]
    imported = hub.KerasLayer(params["hub_module"], **kwargs)
    outp = imported(inp)
    model = tf.keras.Model(inp, outp)

    out_list = model(features, training=(mode == tf.estimator.ModeKeys.TRAIN))
    for j, out in enumerate(out_list):
      i = j+1  # Sample shapes count from one.
      actual_shape = out.shape.as_list()[1:]  # Without batch size.
      expected_shape = [i]*i if "output_shape" in params else [None]*i
      self.assertEqual(actual_shape, expected_shape)
    predictions = {["one", "two", "three"][i]: out_list[i] for i in range(3)}
    imported.get_config()

    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions,
                                      loss=None, train_op=None) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:22,代碼來源:keras_layer_test.py

示例4: test_load_callable_saved_model_v2_with_signature

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def test_load_callable_saved_model_v2_with_signature(self, model_format,
                                                       signature, output_key,
                                                       as_dict):
    export_dir = os.path.join(self.get_temp_dir(), "plus_one_" + model_format)
    _dispatch_model_format(model_format, _save_plus_one_saved_model_v2,
                           _save_plus_one_hub_module_v1, export_dir)
    inputs, expected_outputs = 10., 11.  # Test modules perform increment op.
    layer = hub.KerasLayer(
        export_dir,
        signature=signature,
        output_key=output_key,
        signature_outputs_as_dict=as_dict)
    output = layer(inputs)
    if as_dict:
      self.assertIsInstance(output, dict)
      self.assertEqual(output["output_0"], expected_outputs)
    else:
      self.assertEqual(output, expected_outputs) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:20,代碼來源:keras_layer_test.py

示例5: _image_size_for_module

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def _image_size_for_module(module_layer, requested_image_size=None):
  """Returns the input image size to use with the given module.

  Args:
    module_layer: A hub.KerasLayer initialized from a Hub module expecting
      image input.
    requested_image_size: An optional Python integer with the user-requested
      height and width of the input image; or None.

  Returns:
    A tuple (height, width) of Python integers that can be used as input
    image size for the given module_layer.

  Raises:
    ValueError: If requested_image_size is set but incompatible with the module.
    ValueError: If the module does not specify a particular input size and
       requested_image_size is not set.
  """
  # TODO(b/139530454): Use a library helper function once available.
  # The stop-gap code below assumes any concrete function backing the
  # module call will accept a batch of images with the one accepted size.
  module_image_size = tuple(
      module_layer._func.__call__  # pylint:disable=protected-access
      .concrete_functions[0].structured_input_signature[0][0].shape[1:3])
  if requested_image_size is None:
    if None in module_image_size:
      raise ValueError("Must specify an image size because "
                       "the selected TF Hub module specifies none.")
    else:
      return module_image_size
  else:
    requested_image_size = tf.TensorShape(
        [requested_image_size, requested_image_size])
    assert requested_image_size.is_fully_defined()
    if requested_image_size.is_compatible_with(module_image_size):
      return tuple(requested_image_size.as_list())
    else:
      raise ValueError("The selected TF Hub module expects image size {}, "
                       "but size {} is requested".format(
                           module_image_size,
                           tuple(requested_image_size.as_list()))) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:43,代碼來源:make_image_classifier_lib.py

示例6: make_image_classifier

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def make_image_classifier(tfhub_module, image_dir, hparams,
                          requested_image_size=None,
                          log_dir=None):
  """Builds and trains a TensorFLow model for image classification.

  Args:
    tfhub_module: A Python string with the handle of the Hub module.
    image_dir: A Python string naming a directory with subdirectories of images,
      one per class.
    hparams: A HParams object with hyperparameters controlling the training.
    requested_image_size: A Python integer controlling the size of images to
      feed into the Hub module. If the module has a fixed input size, this
      must be omitted or set to that same value.
    log_dir: A directory to write logs for TensorBoard into (defaults to None,
      no logs will then be written).
  """
  module_layer = hub.KerasLayer(tfhub_module,
                                trainable=hparams.do_fine_tuning)
  image_size = _image_size_for_module(module_layer, requested_image_size)
  print("Using module {} with image size {}".format(
      tfhub_module, image_size))
  augmentation_params = dict(
      rotation_range=hparams.rotation_range,
      horizontal_flip=hparams.horizontal_flip,
      width_shift_range=hparams.width_shift_range,
      height_shift_range=hparams.height_shift_range,
      shear_range=hparams.shear_range,
      zoom_range=hparams.zoom_range)
  train_data_and_size, valid_data_and_size, labels = _get_data_with_keras(
      image_dir, image_size, hparams.batch_size, hparams.validation_split,
      hparams.do_data_augmentation, augmentation_params)
  print("Found", len(labels), "classes:", ", ".join(labels))

  model = build_model(module_layer, hparams, image_size, len(labels))
  train_result = train_model(model, hparams, train_data_and_size,
                             valid_data_and_size, log_dir)
  return model, labels, train_result 
開發者ID:tensorflow,項目名稱:hub,代碼行數:39,代碼來源:make_image_classifier_lib.py

示例7: testImageSizeForModuleWithFixedInputSize

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testImageSizeForModuleWithFixedInputSize(self):
    model_dir = self._export_global_average_model(has_fixed_input_size=True)
    module_layer = hub.KerasLayer(model_dir)
    self.assertTupleEqual(
        (self.IMAGE_SIZE, self.IMAGE_SIZE),
        make_image_classifier_lib._image_size_for_module(module_layer, None))
    self.assertTupleEqual(
        (self.IMAGE_SIZE, self.IMAGE_SIZE),
        make_image_classifier_lib._image_size_for_module(module_layer,
                                                         self.IMAGE_SIZE))
    with self.assertRaisesRegex(ValueError, "image size"):
      make_image_classifier_lib._image_size_for_module(
          module_layer, self.IMAGE_SIZE + 1) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:15,代碼來源:make_image_classifier_test.py

示例8: testImageSizeForModuleWithVariableInputSize

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testImageSizeForModuleWithVariableInputSize(self):
    model_dir = self._export_global_average_model(has_fixed_input_size=False)
    module_layer = hub.KerasLayer(model_dir)
    self.assertTupleEqual(
        (self.IMAGE_SIZE, self.IMAGE_SIZE),
        make_image_classifier_lib._image_size_for_module(module_layer,
                                                         self.IMAGE_SIZE))
    self.assertTupleEqual(
        (2 * self.IMAGE_SIZE, 2 * self.IMAGE_SIZE),
        make_image_classifier_lib._image_size_for_module(module_layer,
                                                         2 * self.IMAGE_SIZE))
    with self.assertRaisesRegex(ValueError, "none"):
      make_image_classifier_lib._image_size_for_module(module_layer, None) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:15,代碼來源:make_image_classifier_test.py

示例9: load_embedding_fn

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def load_embedding_fn(module):
  return hub.KerasLayer(module) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:4,代碼來源:utils.py

示例10: testBatchNormRetraining

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testBatchNormRetraining(self, save_from_keras):
    """Tests imported batch norm with trainable=True."""
    export_dir = os.path.join(self.get_temp_dir(), "batch-norm")
    _save_batch_norm_model(export_dir, save_from_keras=save_from_keras)
    inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    imported = hub.KerasLayer(export_dir, trainable=True)
    var_beta, var_gamma, var_mean, var_variance = _get_batch_norm_vars(imported)
    outp = imported(inp)
    model = tf.keras.Model(inp, outp)
    # Retrain the imported batch norm layer on a fixed batch of inputs,
    # which has mean 12.0 and some variance of a less obvious value.
    # The module learns scale and offset parameters that achieve the
    # mapping x --> 2*x for the observed mean and variance.
    model.compile(tf.keras.optimizers.SGD(0.1),
                  "mean_squared_error", run_eagerly=True)
    x = [[11.], [12.], [13.]]
    y = [[2*xi[0]] for xi in x]
    model.fit(np.array(x), np.array(y), batch_size=len(x), epochs=100)
    self.assertAllClose(var_mean.numpy(), np.array([12.0]))
    self.assertAllClose(var_beta.numpy(), np.array([24.0]))
    self.assertAllClose(model(np.array(x, np.float32)), np.array(y))
    # Evaluating the model operates batch norm in inference mode:
    # - Batch statistics are ignored in favor of aggregated statistics,
    #   computing x --> 2*x independent of input distribution.
    # - Update ops are not run, so this doesn't change over time.
    for _ in range(100):
      self.assertAllClose(model(np.array([[10.], [20.], [30.]], np.float32)),
                          np.array([[20.], [40.], [60.]]))
    self.assertAllClose(var_mean.numpy(), np.array([12.0]))
    self.assertAllClose(var_beta.numpy(), np.array([24.0])) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:32,代碼來源:keras_layer_test.py

示例11: testBatchNormFreezing

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testBatchNormFreezing(self, save_from_keras):
    """Tests imported batch norm with trainable=False."""
    export_dir = os.path.join(self.get_temp_dir(), "batch-norm")
    _save_batch_norm_model(export_dir, save_from_keras=save_from_keras)
    inp = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    imported = hub.KerasLayer(export_dir, trainable=False)
    var_beta, var_gamma, var_mean, var_variance = _get_batch_norm_vars(imported)
    dense = tf.keras.layers.Dense(
        units=1,
        kernel_initializer=tf.keras.initializers.Constant([[1.5]]),
        use_bias=False)
    outp = dense(imported(inp))
    model = tf.keras.Model(inp, outp)
    # Training the model to x --> 2*x leaves the batch norm layer entirely
    # unchanged (both trained beta&gamma and aggregated mean&variance).
    self.assertAllClose(var_beta.numpy(), np.array([0.0]))
    self.assertAllClose(var_gamma.numpy(), np.array([1.0]))
    self.assertAllClose(var_mean.numpy(), np.array([0.0]))
    self.assertAllClose(var_variance.numpy(), np.array([1.0]))
    model.compile(tf.keras.optimizers.SGD(0.1),
                  "mean_squared_error", run_eagerly=True)
    x = [[1.], [2.], [3.]]
    y = [[2*xi[0]] for xi in x]
    model.fit(np.array(x), np.array(y), batch_size=len(x), epochs=20)
    self.assertAllClose(var_beta.numpy(), np.array([0.0]))
    self.assertAllClose(var_gamma.numpy(), np.array([1.0]))
    self.assertAllClose(var_mean.numpy(), np.array([0.0]))
    self.assertAllClose(var_variance.numpy(), np.array([1.0]))
    self.assertAllClose(model(np.array(x, np.float32)), np.array(y)) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:31,代碼來源:keras_layer_test.py

示例12: testCustomAttributes

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testCustomAttributes(self, save_from_keras):
    """Tests custom attributes (Asset and Variable) on a SavedModel."""
    _skip_if_no_tf_asset(self)
    base_dir = os.path.join(self.get_temp_dir(), "custom-attributes")
    export_dir = os.path.join(base_dir, "model")
    temp_dir = os.path.join(base_dir, "scratch")
    _save_model_with_custom_attributes(export_dir, temp_dir,
                                       save_from_keras=save_from_keras)
    imported = hub.KerasLayer(export_dir)
    expected_outputs = imported.resolved_object.sample_output.value().numpy()
    asset_path = imported.resolved_object.sample_input.asset_path.numpy()
    with tf.io.gfile.GFile(asset_path) as f:
      inputs = tf.constant([[f.read()]], dtype=tf.string)
    actual_outputs = imported(inputs).numpy()
    self.assertAllEqual(expected_outputs, actual_outputs) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:17,代碼來源:keras_layer_test.py

示例13: testInputOutputDict

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testInputOutputDict(self, pass_output_shapes):
    """Tests use of input/output dicts."""
    # Create a SavedModel to compute sigma=[x+y, x+2y] and maybe delta=x-y.
    export_dir = os.path.join(self.get_temp_dir(), "with-dicts")
    _save_model_with_dict_input_output(export_dir)
    # Build a Model from it using Keras' "functional" API.
    x_in = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    y_in = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    dict_in = dict(x=x_in, y=y_in)
    kwargs = dict(arguments=dict(return_dict=True))  # For the SavedModel.
    if pass_output_shapes:
      # Shape inference works without this, but we pass it anyways to exercise
      # that code path and see that map_structure is called correctly
      # and calls Tensor.set_shape() with compatible values.
      kwargs["output_shape"] = dict(sigma=(2,), delta=(1,))
    imported = hub.KerasLayer(export_dir, **kwargs)
    dict_out = imported(dict_in)
    delta_out = dict_out["delta"]
    sigma_out = dict_out["sigma"]
    concat_out = tf.keras.layers.concatenate([delta_out, sigma_out])
    model = tf.keras.Model(dict_in, [delta_out, sigma_out, concat_out])
    # Test the model.
    x = np.array([[11.], [22.], [33.]], dtype=np.float32)
    y = np.array([[1.], [2.], [3.]], dtype=np.float32)
    outputs = model(dict(x=x, y=y))
    self.assertLen(outputs, 3)
    delta, sigma, concat = [x.numpy() for x in outputs]
    self.assertAllClose(delta,
                        np.array([[10.], [20.], [30.]]))
    self.assertAllClose(sigma,
                        np.array([[12., 13.], [24., 26.], [36., 39.]]))
    self.assertAllClose(
        concat,
        np.array([[10., 12., 13.], [20., 24., 26.], [30., 36., 39.]]))
    # Test round-trip through config.
    config = imported.get_config()
    new_layer = hub.KerasLayer.from_config(_json_cycle(config))
    if pass_output_shapes:
      self.assertEqual(new_layer._output_shape, imported._output_shape)
    else:
      self.assertFalse(hasattr(new_layer, "_output_shape")) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:43,代碼來源:keras_layer_test.py

示例14: testComputeOutputShape

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testComputeOutputShape(self, save_from_keras):
    export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
    _save_half_plus_one_model(export_dir, save_from_keras=save_from_keras)
    layer = hub.KerasLayer(export_dir, output_shape=[1])
    self.assertEqual([10, 1],
                     layer.compute_output_shape(tuple([10, 1])).as_list())
    layer.get_config() 
開發者ID:tensorflow,項目名稱:hub,代碼行數:9,代碼來源:keras_layer_test.py

示例15: testGetConfigFromConfig

# 需要導入模塊: import tensorflow_hub [as 別名]
# 或者: from tensorflow_hub import KerasLayer [as 別名]
def testGetConfigFromConfig(self, save_from_keras):
    export_dir = os.path.join(self.get_temp_dir(), "half-plus-one")
    _save_half_plus_one_model(export_dir, save_from_keras=save_from_keras)
    layer = hub.KerasLayer(export_dir)
    in_value = np.array([[10.0]], dtype=np.float32)
    result = layer(in_value).numpy()

    config = layer.get_config()
    new_layer = hub.KerasLayer.from_config(_json_cycle(config))
    new_result = new_layer(in_value).numpy()
    self.assertEqual(result, new_result) 
開發者ID:tensorflow,項目名稱:hub,代碼行數:13,代碼來源:keras_layer_test.py


注:本文中的tensorflow_hub.KerasLayer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。