當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow_fold.FromTensor方法代碼示例

本文整理匯總了Python中tensorflow_fold.FromTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow_fold.FromTensor方法的具體用法?Python tensorflow_fold.FromTensor怎麽用?Python tensorflow_fold.FromTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow_fold的用法示例。


在下文中一共展示了tensorflow_fold.FromTensor方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: coding_blk

# 需要導入模塊: import tensorflow_fold [as 別名]
# 或者: from tensorflow_fold import FromTensor [as 別名]
def coding_blk():
    """Input: node dict
    Output: TensorType([1, hyper.word_dim])
    """
    Wcomb1 = param.get('Wcomb1')
    Wcomb2 = param.get('Wcomb2')

    blk = td.Composition()
    with blk.scope():
        direct = embedding.direct_embed_blk().reads(blk.input)
        composed = embedding.composed_embed_blk().reads(blk.input)
        Wcomb1 = td.FromTensor(param.get('Wcomb1'))
        Wcomb2 = td.FromTensor(param.get('Wcomb2'))

        direct = td.Function(embedding.batch_mul).reads(direct, Wcomb1)
        composed = td.Function(embedding.batch_mul).reads(composed, Wcomb2)

        added = td.Function(tf.add).reads(direct, composed)
        blk.output.reads(added)
    return blk 
開發者ID:Aetf,項目名稱:tensorflow-tbcnn,代碼行數:22,代碼來源:tbcnn.py

示例2: continous_weighted_add_blk

# 需要導入模塊: import tensorflow_fold [as 別名]
# 或者: from tensorflow_fold import FromTensor [as 別名]
def continous_weighted_add_blk():
    block = td.Composition(name='continous_weighted_add')
    with block.scope():
        initial = td.GetItem(0).reads(block.input)
        cur = td.GetItem(1).reads(block.input)

        last = td.GetItem(0).reads(initial)
        idx = td.GetItem(1).reads(initial)

        cur_fea = td.GetItem(0).reads(cur)
        cur_clen = td.GetItem(1).reads(cur)
        pclen = td.GetItem(2).reads(cur)

        Wi = linear_combine_blk().reads(cur_clen, pclen, idx)

        weighted_fea = td.Function(batch_mul).reads(cur_fea, Wi)

        block.output.reads(
            td.Function(tf.add, name='add_last_weighted_fea').reads(last, weighted_fea),
            # XXX: rewrite using tf.range
            td.Function(tf.add, name='add_idx_1').reads(idx, td.FromTensor(tf.constant(1.)))
        )
    return block 
開發者ID:Aetf,項目名稱:tensorflow-tbcnn,代碼行數:25,代碼來源:embedding.py

示例3: l2loss_blk

# 需要導入模塊: import tensorflow_fold [as 別名]
# 或者: from tensorflow_fold import FromTensor [as 別名]
def l2loss_blk():
    # rewrite using metric
    leaf_case = td.Composition()
    with leaf_case.scope():
        leaf_case.output.reads(td.FromTensor(tf.constant(1.)))
    nonleaf_case = td.Composition()
    with nonleaf_case.scope():
        direct = direct_embed_blk().reads(nonleaf_case.input)
        com = composed_embed_blk().reads(nonleaf_case.input)
        loss = td.Function(batch_nn_l2loss).reads(direct, com)
        nonleaf_case.output.reads(loss)
    return td.OneOf(lambda node: node['clen'] != 0,
                    {False: leaf_case, True: nonleaf_case})


# generalize to tree_reduce, accepts one block that takes two node, returns a value 
開發者ID:Aetf,項目名稱:tensorflow-tbcnn,代碼行數:18,代碼來源:embedding.py

示例4: feature_detector_blk

# 需要導入模塊: import tensorflow_fold [as 別名]
# 或者: from tensorflow_fold import FromTensor [as 別名]
def feature_detector_blk(max_depth=2):
    """Input: node dict
    Output: TensorType([hyper.conv_dim, ])
    Single patch of the conv. Depth is max_depth
    """
    blk = td.Composition()
    with blk.scope():
        nodes_in_patch = collect_node_for_conv_patch_blk(max_depth=max_depth).reads(blk.input)

        # map from python object to tensors
        mapped = td.Map(td.Record((coding_blk(), td.Scalar(), td.Scalar(),
                                   td.Scalar(), td.Scalar()))).reads(nodes_in_patch)
        # mapped = [(feature, idx, depth, max_depth), (...)]

        # compute weighted feature for each elem
        weighted = td.Map(weighted_feature_blk()).reads(mapped)
        # weighted = [fea, fea, fea, ...]

        # add together
        added = td.Reduce(td.Function(tf.add)).reads(weighted)
        # added = TensorType([hyper.conv_dim, ])

        # add bias
        biased = td.Function(tf.add).reads(added, td.FromTensor(param.get('Bconv')))
        # biased = TensorType([hyper.conv_dim, ])

        # tanh
        tanh = td.Function(tf.nn.tanh).reads(biased)
        # tanh = TensorType([hyper.conv_dim, ])

        blk.output.reads(tanh)
    return blk


# generalize to tree_fold, accepts one block that takes two node, returns a value 
開發者ID:Aetf,項目名稱:tensorflow-tbcnn,代碼行數:37,代碼來源:tbcnn.py

示例5: composed_embed_blk

# 需要導入模塊: import tensorflow_fold [as 別名]
# 或者: from tensorflow_fold import FromTensor [as 別名]
def composed_embed_blk():
    leaf_case = direct_embed_blk()
    nonleaf_case = td.Composition(name='composed_embed_nonleaf')
    with nonleaf_case.scope():
        children = td.GetItem('children').reads(nonleaf_case.input)
        clen = td.Scalar().reads(td.GetItem('clen').reads(nonleaf_case.input))
        cclens = td.Map(td.GetItem('clen') >> td.Scalar()).reads(children)
        fchildren = td.Map(direct_embed_blk()).reads(children)

        initial_state = td.Composition()
        with initial_state.scope():
            initial_state.output.reads(
                td.FromTensor(tf.zeros(hyper.word_dim)),
                td.FromTensor(tf.zeros([])),
            )
        summed = td.Zip().reads(fchildren, cclens, td.Broadcast().reads(clen))
        summed = td.Fold(continous_weighted_add_blk(), initial_state).reads(summed)[0]
        added = td.Function(tf.add, name='add_bias').reads(summed, td.FromTensor(param.get('B')))
        normed = clip_by_norm_blk().reads(added)

        act_fn = tf.nn.relu if hyper.use_relu else tf.nn.tanh
        relu = td.Function(act_fn).reads(normed)
        nonleaf_case.output.reads(relu)

    return td.OneOf(lambda node: node['clen'] == 0,
                    {True: leaf_case, False: nonleaf_case}) 
開發者ID:Aetf,項目名稱:tensorflow-tbcnn,代碼行數:28,代碼來源:embedding.py


注:本文中的tensorflow_fold.FromTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。