本文整理匯總了Python中tensorflow.zeros_like方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.zeros_like方法的具體用法?Python tensorflow.zeros_like怎麽用?Python tensorflow.zeros_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.zeros_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_first_or_last
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def compute_first_or_last(self, select, first=True):
#perform first ot last operation on row select with probabilistic row selection
answer = tf.zeros_like(select)
running_sum = tf.zeros([self.batch_size, 1], self.data_type)
for i in range(self.max_elements):
if (first):
current = tf.slice(select, [0, i], [self.batch_size, 1])
else:
current = tf.slice(select, [0, self.max_elements - 1 - i],
[self.batch_size, 1])
curr_prob = current * (1 - running_sum)
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
running_sum += curr_prob
temp_ans = []
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
for i_ans in range(self.max_elements):
if (not (first) and i_ans == self.max_elements - 1 - i):
temp_ans.append(curr_prob)
elif (first and i_ans == i):
temp_ans.append(curr_prob)
else:
temp_ans.append(tf.zeros_like(curr_prob))
temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
answer += temp_ans
return answer
示例2: iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def iou(boxlist1, boxlist2, scope=None):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding M boxes
scope: name scope.
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'IOU'):
intersections = intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
示例3: matched_iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def matched_iou(boxlist1, boxlist2, scope=None):
"""Compute intersection-over-union between corresponding boxes in boxlists.
Args:
boxlist1: BoxList holding N boxes
boxlist2: BoxList holding N boxes
scope: name scope.
Returns:
a tensor with shape [N] representing pairwise iou scores.
"""
with tf.name_scope(scope, 'MatchedIOU'):
intersections = matched_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = areas1 + areas2 - intersections
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
示例4: testRandomFlipBoxes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def testRandomFlipBoxes(self):
boxes = self.createTestBoxes()
# Case where the boxes are flipped.
boxes_expected1 = self.expectedBoxesAfterMirroring()
# Case where the boxes are not flipped.
boxes_expected2 = boxes
# After elementwise multiplication, the result should be all-zero since one
# of them is all-zero.
boxes_diff = tf.multiply(
tf.squared_difference(boxes, boxes_expected1),
tf.squared_difference(boxes, boxes_expected2))
expected_result = tf.zeros_like(boxes_diff)
with self.test_session() as sess:
(boxes_diff, expected_result) = sess.run([boxes_diff, expected_result])
self.assertAllEqual(boxes_diff, expected_result)
示例5: _Apply
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _Apply(self, x):
assert self._current_layer < self._layer_count
# Layer state is set to 0 when there is no previous iteration.
if self._layer_state is None:
self._layer_state = tf.zeros_like(x, dtype=tf.float32)
# Code estimation using both:
# - the state from the previous iteration/layer,
# - the binary codes that are before in raster scan order.
estimated_codes = self._brnn_predictors[self._current_layer](
x, self._layer_state)
# Compute the updated layer state.
h = self._state_blocks[self._current_layer](x)
self._layer_state = self._layer_rnn(h)
self._current_layer += 1
return estimated_codes
示例6: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def __init__(
self, template, center=True, scale=True, clip=10, name='normalize'):
"""Normalize tensors based on streaming estimates of mean and variance.
Centering the value, scaling it by the standard deviation, and clipping
outlier values are optional.
Args:
template: Example tensor providing shape and dtype of the vaule to track.
center: Python boolean indicating whether to subtract mean from values.
scale: Python boolean indicating whether to scale values by stddev.
clip: If and when to clip normalized values.
name: Parent scope of operations provided by this class.
"""
self._center = center
self._scale = scale
self._clip = clip
self._name = name
with tf.name_scope(name):
self._count = tf.Variable(0, False)
self._mean = tf.Variable(tf.zeros_like(template), False)
self._var_sum = tf.Variable(tf.zeros_like(template), False)
示例7: reinit_nested_vars
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reinit_nested_vars(variables, indices=None):
"""Reset all variables in a nested tuple to zeros.
Args:
variables: Nested tuple or list of variaables.
indices: Indices along the first dimension to reset, defaults to all.
Returns:
Operation.
"""
if isinstance(variables, (tuple, list)):
return tf.group(*[
reinit_nested_vars(variable, indices) for variable in variables])
if indices is None:
return variables.assign(tf.zeros_like(variables))
else:
zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
return tf.scatter_update(variables, indices, zeros)
示例8: reset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reset(self, indices=None):
"""Reset the batch of environments.
Args:
indices: The batch indices of the environments to reset; defaults to all.
Returns:
Batch tensor of the new observations.
"""
if indices is None:
indices = tf.range(len(self._batch_env))
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ = tf.py_func(
self._batch_env.reset, [indices], observ_dtype, name='reset')
observ = tf.check_numerics(observ, 'observ')
reward = tf.zeros_like(indices, tf.float32)
done = tf.zeros_like(indices, tf.bool)
with tf.control_dependencies([
tf.scatter_update(self._observ, indices, observ),
tf.scatter_update(self._reward, indices, reward),
tf.scatter_update(self._done, indices, done)]):
return tf.identity(observ)
示例9: reinit_nested_vars
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reinit_nested_vars(variables, indices=None):
"""Reset all variables in a nested tuple to zeros.
Args:
variables: Nested tuple or list of variaables.
indices: Batch indices to reset, defaults to all.
Returns:
Operation.
"""
if isinstance(variables, (tuple, list)):
return tf.group(*[
reinit_nested_vars(variable, indices) for variable in variables])
if indices is None:
return variables.assign(tf.zeros_like(variables))
else:
zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
return tf.scatter_update(variables, indices, zeros)
示例10: _load_data_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
"""
Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
placeholders and the weights of the hidden layer of the Seq2Seq model.
:return: None
"""
# input
with tf.variable_scope("train_test", reuse=True):
# review input - Both original and reversed
self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
for t in range(self.seq_length)]
self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
for t in range(self.seq_length)]
# desired output
self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
for t in range(self.seq_length)]
# weight of the hidden layer
self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
for labels_t in self.labels]
# Decoder input: prepend some "GO" token and drop the final
# token of the encoder input
self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
示例11: _load_data_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
"""
Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
placeholders and the weights of the hidden layer of the Seq2Seq model.
:return: None
"""
# input
with tf.variable_scope("train_test", reuse=True):
self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
for t in range(self.seq_length)]
# desired output
self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
for t in range(self.seq_length)]
# weight of the hidden layer
self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
for labels_t in self.labels]
# Decoder input: prepend some "GO" token and drop the final
# token of the encoder input
self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
示例12: _load_data_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
"""
Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
placeholders and the weights of the hidden layer of the Seq2Seq model.
:return: None
"""
# input
with tf.variable_scope("train_test", reuse=True):
self.enc_inp = [tf.placeholder(tf.int32, shape=(None,),
name="input%i" % t)
for t in range(self.seq_length)]
# desired output
self.labels = [tf.placeholder(tf.int32, shape=(None,),
name="labels%i" % t)
for t in range(self.seq_length)]
# weight of the hidden layer
self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
for labels_t in self.labels]
# Decoder input: prepend some "GO" token and drop the final
# token of the encoder input
self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")]
+ self.labels[:-1])
示例13: calculate_generalized_advantage_estimator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def calculate_generalized_advantage_estimator(
reward, value, done, gae_gamma, gae_lambda):
"""Generalized advantage estimator."""
# Below is slight weirdness, we set the last reward to 0.
# This makes the advantage to be 0 in the last timestep
reward = tf.concat([reward[:-1, :], value[-1:, :]], axis=0)
next_value = tf.concat([value[1:, :], tf.zeros_like(value[-1:, :])], axis=0)
next_not_done = 1 - tf.cast(tf.concat([done[1:, :],
tf.zeros_like(done[-1:, :])], axis=0),
tf.float32)
delta = reward + gae_gamma * next_value * next_not_done - value
return_ = tf.reverse(tf.scan(
lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
[tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
tf.zeros_like(delta[0, :]),
parallel_iterations=1), [0])
return tf.check_numerics(return_, "return")
示例14: simulate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def simulate(self, action):
with tf.name_scope("environment/simulate"): # Do we need this?
initializer = (tf.zeros_like(self._observ),
tf.fill((len(self),), 0.0), tf.fill((len(self),), False))
def not_done_step(a, _):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
# TODO(piotrmilos): possibly ignore envs with done
r0 = tf.maximum(a[0], self._batch_env.observ)
r1 = tf.add(a[1], reward)
r2 = tf.logical_or(a[2], done)
return (r0, r1, r2)
simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
initializer=initializer, parallel_iterations=1,
infer_shape=False)
simulate_ret = [ret[-1, ...] for ret in simulate_ret]
with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2])
示例15: padded_accuracy_topk
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def padded_accuracy_topk(predictions,
labels,
k,
weights_fn=common_layers.weights_nonzero):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.variable_scope("padded_accuracy_topk", values=[predictions, labels]):
padded_predictions, padded_labels = common_layers.pad_with_zeros(
predictions, labels)
weights = weights_fn(padded_labels)
effective_k = tf.minimum(k,
common_layers.shape_list(padded_predictions)[-1])
_, outputs = tf.nn.top_k(padded_predictions, k=effective_k)
outputs = tf.to_int32(outputs)
padded_labels = tf.to_int32(padded_labels)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.to_float(tf.equal(outputs, padded_labels))
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights