當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.zeros_like方法代碼示例

本文整理匯總了Python中tensorflow.zeros_like方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.zeros_like方法的具體用法?Python tensorflow.zeros_like怎麽用?Python tensorflow.zeros_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.zeros_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_first_or_last

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def compute_first_or_last(self, select, first=True):
    #perform first ot last operation on row select with probabilistic row selection
    answer = tf.zeros_like(select)
    running_sum = tf.zeros([self.batch_size, 1], self.data_type)
    for i in range(self.max_elements):
      if (first):
        current = tf.slice(select, [0, i], [self.batch_size, 1])
      else:
        current = tf.slice(select, [0, self.max_elements - 1 - i],
                           [self.batch_size, 1])
      curr_prob = current * (1 - running_sum)
      curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
      running_sum += curr_prob
      temp_ans = []
      curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
      for i_ans in range(self.max_elements):
        if (not (first) and i_ans == self.max_elements - 1 - i):
          temp_ans.append(curr_prob)
        elif (first and i_ans == i):
          temp_ans.append(curr_prob)
        else:
          temp_ans.append(tf.zeros_like(curr_prob))
      temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
      answer += temp_ans
    return answer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例2: iou

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def iou(boxlist1, boxlist2, scope=None):
  """Computes pairwise intersection-over-union between box collections.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding M boxes
    scope: name scope.

  Returns:
    a tensor with shape [N, M] representing pairwise iou scores.
  """
  with tf.name_scope(scope, 'IOU'):
    intersections = intersection(boxlist1, boxlist2)
    areas1 = area(boxlist1)
    areas2 = area(boxlist2)
    unions = (
        tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
    return tf.where(
        tf.equal(intersections, 0.0),
        tf.zeros_like(intersections), tf.truediv(intersections, unions)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:box_list_ops.py

示例3: matched_iou

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def matched_iou(boxlist1, boxlist2, scope=None):
  """Compute intersection-over-union between corresponding boxes in boxlists.

  Args:
    boxlist1: BoxList holding N boxes
    boxlist2: BoxList holding N boxes
    scope: name scope.

  Returns:
    a tensor with shape [N] representing pairwise iou scores.
  """
  with tf.name_scope(scope, 'MatchedIOU'):
    intersections = matched_intersection(boxlist1, boxlist2)
    areas1 = area(boxlist1)
    areas2 = area(boxlist2)
    unions = areas1 + areas2 - intersections
    return tf.where(
        tf.equal(intersections, 0.0),
        tf.zeros_like(intersections), tf.truediv(intersections, unions)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:box_list_ops.py

示例4: testRandomFlipBoxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def testRandomFlipBoxes(self):
    boxes = self.createTestBoxes()

    # Case where the boxes are flipped.
    boxes_expected1 = self.expectedBoxesAfterMirroring()

    # Case where the boxes are not flipped.
    boxes_expected2 = boxes

    # After elementwise multiplication, the result should be all-zero since one
    # of them is all-zero.
    boxes_diff = tf.multiply(
        tf.squared_difference(boxes, boxes_expected1),
        tf.squared_difference(boxes, boxes_expected2))
    expected_result = tf.zeros_like(boxes_diff)

    with self.test_session() as sess:
      (boxes_diff, expected_result) = sess.run([boxes_diff, expected_result])
      self.assertAllEqual(boxes_diff, expected_result) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:preprocessor_test.py

示例5: _Apply

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _Apply(self, x):
    assert self._current_layer < self._layer_count

    # Layer state is set to 0 when there is no previous iteration.
    if self._layer_state is None:
      self._layer_state = tf.zeros_like(x, dtype=tf.float32)

    # Code estimation using both:
    # - the state from the previous iteration/layer,
    # - the binary codes that are before in raster scan order.
    estimated_codes = self._brnn_predictors[self._current_layer](
        x, self._layer_state)

    # Compute the updated layer state.
    h = self._state_blocks[self._current_layer](x)
    self._layer_state = self._layer_rnn(h)
    self._current_layer += 1

    return estimated_codes 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:progressive.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def __init__(
      self, template, center=True, scale=True, clip=10, name='normalize'):
    """Normalize tensors based on streaming estimates of mean and variance.

    Centering the value, scaling it by the standard deviation, and clipping
    outlier values are optional.

    Args:
      template: Example tensor providing shape and dtype of the vaule to track.
      center: Python boolean indicating whether to subtract mean from values.
      scale: Python boolean indicating whether to scale values by stddev.
      clip: If and when to clip normalized values.
      name: Parent scope of operations provided by this class.
    """
    self._center = center
    self._scale = scale
    self._clip = clip
    self._name = name
    with tf.name_scope(name):
      self._count = tf.Variable(0, False)
      self._mean = tf.Variable(tf.zeros_like(template), False)
      self._var_sum = tf.Variable(tf.zeros_like(template), False) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:normalize.py

示例7: reinit_nested_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reinit_nested_vars(variables, indices=None):
  """Reset all variables in a nested tuple to zeros.

  Args:
    variables: Nested tuple or list of variaables.
    indices: Indices along the first dimension to reset, defaults to all.

  Returns:
    Operation.
  """
  if isinstance(variables, (tuple, list)):
    return tf.group(*[
        reinit_nested_vars(variable, indices) for variable in variables])
  if indices is None:
    return variables.assign(tf.zeros_like(variables))
  else:
    zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
    return tf.scatter_update(variables, indices, zeros) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:utility.py

示例8: reset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:in_graph_batch_env.py

示例9: reinit_nested_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def reinit_nested_vars(variables, indices=None):
  """Reset all variables in a nested tuple to zeros.

  Args:
    variables: Nested tuple or list of variaables.
    indices: Batch indices to reset, defaults to all.

  Returns:
    Operation.
  """
  if isinstance(variables, (tuple, list)):
    return tf.group(*[
        reinit_nested_vars(variable, indices) for variable in variables])
  if indices is None:
    return variables.assign(tf.zeros_like(variables))
  else:
    zeros = tf.zeros([tf.shape(indices)[0]] + variables.shape[1:].as_list())
    return tf.scatter_update(variables, indices, zeros) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:20,代碼來源:utility.py

示例10: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:26,代碼來源:bidirectional.py

示例11: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:23,代碼來源:simple.py

示例12: _load_data_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,),
                                           name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,),
                                          name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")]
                            + self.labels[:-1]) 
開發者ID:harpribot,項目名稱:deep-summarization,代碼行數:26,代碼來源:stacked_simple.py

示例13: calculate_generalized_advantage_estimator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  """Generalized advantage estimator."""

  # Below is slight weirdness, we set the last reward to 0.
  # This makes the advantage to be 0 in the last timestep
  reward = tf.concat([reward[:-1, :], value[-1:, :]], axis=0)
  next_value = tf.concat([value[1:, :], tf.zeros_like(value[-1:, :])], axis=0)
  next_not_done = 1 - tf.cast(tf.concat([done[1:, :],
                                         tf.zeros_like(done[-1:, :])], axis=0),
                              tf.float32)
  delta = reward + gae_gamma * next_value * next_not_done - value

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:ppo.py

示例14: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros_like(self._observ),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          # TODO(piotrmilos): possibly ignore envs with done
          r0 = tf.maximum(a[0], self._batch_env.observ)
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)

          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      simulate_ret = [ret[-1, ...] for ret in simulate_ret]

      with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
        return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:tf_atari_wrappers.py

示例15: padded_accuracy_topk

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_like [as 別名]
def padded_accuracy_topk(predictions,
                         labels,
                         k,
                         weights_fn=common_layers.weights_nonzero):
  """Percentage of times that top-k predictions matches labels on non-0s."""
  with tf.variable_scope("padded_accuracy_topk", values=[predictions, labels]):
    padded_predictions, padded_labels = common_layers.pad_with_zeros(
        predictions, labels)
    weights = weights_fn(padded_labels)
    effective_k = tf.minimum(k,
                             common_layers.shape_list(padded_predictions)[-1])
    _, outputs = tf.nn.top_k(padded_predictions, k=effective_k)
    outputs = tf.to_int32(outputs)
    padded_labels = tf.to_int32(padded_labels)
    padded_labels = tf.expand_dims(padded_labels, axis=-1)
    padded_labels += tf.zeros_like(outputs)  # Pad to same shape.
    same = tf.to_float(tf.equal(outputs, padded_labels))
    same_topk = tf.reduce_sum(same, axis=-1)
    return same_topk, weights 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:metrics.py


注:本文中的tensorflow.zeros_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。