當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.zeros_initializer方法代碼示例

本文整理匯總了Python中tensorflow.zeros_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.zeros_initializer方法的具體用法?Python tensorflow.zeros_initializer怎麽用?Python tensorflow.zeros_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.zeros_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_state

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def init_state(inputs,
               state_shape,
               state_initializer=tf.zeros_initializer(),
               dtype=tf.float32):
  """Helper function to create an initial state given inputs.

  Args:
    inputs: input Tensor, at least 2D, the first dimension being batch_size
    state_shape: the shape of the state.
    state_initializer: Initializer(shape, dtype) for state Tensor.
    dtype: Optional dtype, needed when inputs is None.
  Returns:
     A tensors representing the initial state.
  """
  if inputs is not None:
    # Handle both the dynamic shape as well as the inferred shape.
    inferred_batch_size = inputs.get_shape().with_rank_at_least(1)[0]
    dtype = inputs.dtype
  else:
    inferred_batch_size = 0
  initial_state = state_initializer(
      [inferred_batch_size] + state_shape, dtype=dtype)
  return initial_state 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:lstm_ops.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def __init__(self, component, name, shape, dtype):
    """Construct variables to normalize an input of given shape.

    Arguments:
      component: ComponentBuilder handle.
      name: Human readable name to organize the variables.
      shape: Shape of the layer to be normalized.
      dtype: Type of the layer to be normalized.
    """
    self._name = name
    self._shape = shape
    self._component = component
    beta = tf.get_variable(
        'beta_%s' % name,
        shape=shape,
        dtype=dtype,
        initializer=tf.zeros_initializer())
    gamma = tf.get_variable(
        'gamma_%s' % name,
        shape=shape,
        dtype=dtype,
        initializer=tf.ones_initializer())
    self._params = [beta, gamma] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:network_units.py

示例3: global_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def global_step(device=''):
  """Returns the global step variable.

  Args:
    device: Optional device to place the variable. It can be an string or a
      function that is called to get the device for the variable.

  Returns:
    the tensor representing the global step variable.
  """
  global_step_ref = tf.get_collection(tf.GraphKeys.GLOBAL_STEP)
  if global_step_ref:
    return global_step_ref[0]
  else:
    collections = [
        VARIABLES_TO_RESTORE,
        tf.GraphKeys.GLOBAL_VARIABLES,
        tf.GraphKeys.GLOBAL_STEP,
    ]
    # Get the device for the variable.
    with tf.device(variable_device(device, 'global_step')):
      return tf.get_variable('global_step', shape=[], dtype=tf.int64,
                             initializer=tf.zeros_initializer(),
                             trainable=False, collections=collections) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:variables.py

示例4: layer_norm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def layer_norm(x, filters=None, epsilon=1e-6, name=None, reuse=None):
  """Layer normalize the tensor x, averaging over the last dimension."""
  if filters is None:
    filters = shape_list(x)[-1]
  with tf.variable_scope(
      name, default_name="layer_norm", values=[x], reuse=reuse):
    scale = tf.get_variable(
        "layer_norm_scale", [filters], initializer=tf.ones_initializer())
    bias = tf.get_variable(
        "layer_norm_bias", [filters], initializer=tf.zeros_initializer())
    if allow_defun:
      result = layer_norm_compute(x, tf.constant(epsilon), scale, bias)
      result.set_shape(x.get_shape())
    else:
      result = layer_norm_compute_python(x, epsilon, scale, bias)
    return result 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:common_layers.py

示例5: init_param

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def init_param(self):
		idm = self.input_dim
		hs = self.hidden_size
		ws = len(self.window)
		nf = idm * ws
		# author's special initlaization strategy.
		self.Wemb = tf.get_variable(name=self.name + '_Wemb', shape=[self.vocab_size, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.bhid = tf.get_variable(name=self.name + '_bhid', shape=[self.vocab_size], dtype=tf.float32, initializer=tf.zeros_initializer())
		self.Vhid = tf.get_variable(name=self.name + '_Vhid', shape=[hs, idm], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.Vhid = dot(self.Vhid, self.Wemb) # [hidden_size, vocab_size]
		self.i2h_W = tf.get_variable(name=self.name + '_i2h_W', shape=[idm, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.h2h_W = tf.get_variable(name=self.name + '_h2h_W', shape=[hs, hs * 4], dtype=tf.float32, initializer=tf.orthogonal_initializer())
		self.z2h_W = tf.get_variable(name=self.name + '_z2h_W', shape=[nf, hs * 4], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		b_init_1 = tf.zeros((hs,))
		b_init_2 = tf.ones((hs,)) * 3
		b_init_3 = tf.zeros((hs,))
		b_init_4 = tf.zeros((hs,))
		b_init = tf.concat([b_init_1, b_init_2, b_init_3, b_init_4], axis=0)
		# b_init = tf.constant(b_init)
		# self.b = tf.get_variable(name=self.name + '_b', shape=[hs * 4], dtype=tf.float32, initializer=b_init)
		self.b = tf.get_variable(name=self.name + '_b', dtype=tf.float32, initializer=b_init) # ValueError: If initializer is a constant, do not specify shape.
		self.C0 = tf.get_variable(name=self.name + '_C0', shape=[nf, hs], dtype=tf.float32, initializer=tf.random_uniform_initializer())
		self.b0 = tf.get_variable(name=self.name + '_b0', shape=[hs], dtype=tf.float32, initializer=tf.zeros_initializer()) 
開發者ID:Jeff-HOU,項目名稱:UROP-Adversarial-Feature-Matching-for-Text-Generation,代碼行數:25,代碼來源:generator.py

示例6: _dense_block_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"):
    """
    :param x:
    :param hidden_units:
    :param dropouts:
    :param densenet: enable densenet
    :return:
    Ref: https://github.com/titu1994/DenseNet
    """
    for i, (h, d) in enumerate(zip(hidden_units, dropouts)):
        z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i),
                            dtype=tf.float32,
                            bias_initializer=tf.zeros_initializer())(x)
        if bn:
            z = batch_normalization(z, training=training, name=name+"-"+str(i))
        z = tf.nn.relu(z)
        # z = tf.nn.selu(z)
        z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z
        if densenet:
            x = tf.concat([x, z], axis=-1)
        else:
            x = z
    return x 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:25,代碼來源:nn_module.py

示例7: _dense_block_mode2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"):
    """
    :param x:
    :param hidden_units:
    :param dropouts:
    :param densenet: enable densenet
    :return:
    Ref: https://github.com/titu1994/DenseNet
    """
    for i, (h, d) in enumerate(zip(hidden_units, dropouts)):
        if bn:
            z = batch_normalization(x, training=training, name=name + "-" + str(i))
        z = tf.nn.relu(z)
        z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z
        z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32,
                            bias_initializer=tf.zeros_initializer())(z)
        if densenet:
            x = tf.concat([x, z], axis=-1)
        else:
            x = z
    return x 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:23,代碼來源:nn_module.py

示例8: _resnet_branch_mode1

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0):
    h1, h2, h3 = hidden_units
    dr1, dr2, dr3 = dropouts
    # branch 2
    x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x)
    x2 = tf.layers.BatchNormalization()(x2)
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2

    x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2)
    x2 = tf.nn.relu(x2)
    x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2

    x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32,
                         bias_initializer=tf.zeros_initializer())(x2)
    x2 = tf.layers.BatchNormalization()(x2)

    return x2 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:23,代碼來源:nn_module.py

示例9: conv3d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def conv3d(inpt, f, output_channels, s, use_bias=False, scope='conv', name=None):
    inpt_shape = inpt.get_shape().as_list()
    with tf.variable_scope(scope):
        filtr = tf.get_variable(initializer=tf.contrib.layers.xavier_initializer(),
                                shape=[f,f,f,inpt_shape[-1],output_channels],name='filtr')
        
    strides = [1,s,s,s,1]
    output = conv3d_withPeriodicPadding(inpt,filtr,strides,name)
    
    if use_bias:
        with tf.variable_scope(scope):
            bias = tf.get_variable(intializer=tf.zeros_initializer(
                [1,1,1,1,output_channels],dtype=tf.float32),name='bias')
            output = output + bias;
    
    return output 
開發者ID:akshaysubr,項目名稱:TEGAN,代碼行數:18,代碼來源:ops.py

示例10: _create_user_terms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def _create_user_terms(self, users, N):
        num_users = self.num_users
        num_items = self.num_items
        num_factors = self.num_factors

        p_u, b_u = super(SVDPP, self)._create_user_terms(users)

        with tf.variable_scope('user'):
            implicit_feedback_embeddings = tf.get_variable(
                name='implict_feedback_embedding',
                shape=[num_items, num_factors],
                initializer=tf.zeros_initializer(),
                regularizer=tf.contrib.layers.l2_regularizer(self.reg_y_u))

            y_u = tf.gather(
                tf.nn.embedding_lookup_sparse(
                    implicit_feedback_embeddings,
                    N,
                    sp_weights=None,
                    combiner='sqrtn'),
                users,
                name='y_u'
            )

        return p_u, b_u, y_u 
開發者ID:WindQAQ,項目名稱:tf-recsys,代碼行數:27,代碼來源:svdpp.py

示例11: resnet_bottleneck

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def resnet_bottleneck(l, ch_out, stride, stride_first=False):
    shortcut = l
    norm_relu = lambda x: tf.nn.relu(Norm(x))
    l = Conv2D('conv1', l, ch_out, 1, strides=stride if stride_first else 1, activation=norm_relu)
    """
    Sec 5.1:
    We use the ResNet-50 [16] variant from [12], noting that
    the stride-2 convolutions are on 3×3 layers instead of on 1×1 layers
    """
    l = Conv2D('conv2', l, ch_out, 3, strides=1 if stride_first else stride, activation=norm_relu)
    """
    Section 5.1:
    For BN layers, the learnable scaling coefficient γ is initialized
    to be 1, except for each residual block's last BN
    where γ is initialized to be 0.
    """
    l = Conv2D('conv3', l, ch_out * 4, 1, activation=lambda x: Norm(x, gamma_initializer=tf.zeros_initializer()))
    ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=lambda x: Norm(x))
    return tf.nn.relu(ret, name='block_output') 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:21,代碼來源:resnet_model.py

示例12: vgg_arg_scope

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu,
                      weights_regularizer=slim.l2_regularizer(weight_decay),
                      biases_initializer=tf.zeros_initializer()):
    with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:17,代碼來源:vgg.py

示例13: overfeat_arg_scope

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def overfeat_arg_scope(weight_decay=0.0005):
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu,
                      weights_regularizer=slim.l2_regularizer(weight_decay),
                      biases_initializer=tf.zeros_initializer()):
    with slim.arg_scope([slim.conv2d], padding='SAME'):
      with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:overfeat.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def __init__(self, net, labels_one_hot, model_params, method_params):
    """Stores argument in member variable for further use.

    Args:
      net: A tensor with shape [batch_size, num_features, feature_size] which
        contains some extracted image features.
      labels_one_hot: An optional (can be None) ground truth labels for the
        input features. Is a tensor with shape
        [batch_size, seq_length, num_char_classes]
      model_params: A namedtuple with model parameters (model.ModelParams).
      method_params: A SequenceLayerParams instance.
    """
    self._params = model_params
    self._mparams = method_params
    self._net = net
    self._labels_one_hot = labels_one_hot
    self._batch_size = net.get_shape().dims[0].value

    # Initialize parameters for char logits which will be computed on the fly
    # inside an LSTM decoder.
    self._char_logits = {}
    regularizer = slim.l2_regularizer(self._mparams.weight_decay)
    self._softmax_w = slim.model_variable(
        'softmax_w',
        [self._mparams.num_lstm_units, self._params.num_char_classes],
        initializer=orthogonal_initializer,
        regularizer=regularizer)
    self._softmax_b = slim.model_variable(
        'softmax_b', [self._params.num_char_classes],
        initializer=tf.zeros_initializer(),
        regularizer=regularizer) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:sequence_layers.py

示例15: fc_network

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import zeros_initializer [as 別名]
def fc_network(x, neurons, wt_decay, name, num_pred=None, offset=0,
               batch_norm_param=None, dropout_ratio=0.0, is_training=None): 
  if dropout_ratio > 0:
    assert(is_training is not None), \
      'is_training needs to be defined when trainnig with dropout.'
  
  repr = []
  for i, neuron in enumerate(neurons):
    init_var = np.sqrt(2.0/neuron)
    if batch_norm_param is not None:
      x = slim.fully_connected(x, neuron, activation_fn=None,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               normalizer_fn=slim.batch_norm,
                               normalizer_params=batch_norm_param,
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    else:
      x = slim.fully_connected(x, neuron, activation_fn=tf.nn.relu,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    if dropout_ratio > 0:
       x = slim.dropout(x, keep_prob=1-dropout_ratio, is_training=is_training,
                        scope='{:s}_{:d}'.format('dropout_'+name, offset+i))
    repr.append(x)
  
  if num_pred is not None:
    init_var = np.sqrt(2.0/num_pred)
    x = slim.fully_connected(x, num_pred,
                             weights_regularizer=slim.l2_regularizer(wt_decay),
                             weights_initializer=tf.random_normal_initializer(stddev=init_var),
                             biases_initializer=tf.zeros_initializer(),
                             activation_fn=None,
                             scope='{:s}_pred'.format(name))
  return x, repr 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:39,代碼來源:tf_utils.py


注:本文中的tensorflow.zeros_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。