本文整理匯總了Python中tensorflow.while方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.while方法的具體用法?Python tensorflow.while怎麽用?Python tensorflow.while使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.while方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testUseWithinWhileLoop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import while [as 別名]
def testUseWithinWhileLoop(self):
with tf.Graph().as_default():
spec = hub.create_module_spec(double_module_fn)
m = hub.Module(spec)
i = tf.constant(0)
x = tf.constant(10.0)
p = tf_v1.placeholder(dtype=tf.int32)
c = lambda i, x: tf.less(i, p)
b = lambda i, x: (tf.add(i, 1), m(x))
oi, ox = tf.while_loop(c, b, [i, x]) # ox = v**p * x
v = m.variables[0]
dodv = tf.gradients(ox, v)[0] # d ox / dv = p*v**(p-1) * x
dodx = tf.gradients(ox, x)[0] # d ox / dx = v**p
with tf_v1.Session() as sess:
sess.run(tf_v1.global_variables_initializer())
self.assertAllEqual(sess.run([oi, ox], feed_dict={p: 1}), [1, 20])
self.assertAllEqual(sess.run([oi, ox], feed_dict={p: 2}), [2, 40])
self.assertAllEqual(sess.run([oi, ox], feed_dict={p: 4}), [4, 160])
# Gradients also use the control flow structures setup earlier.
# Also check they are working properly.
self.assertAllEqual(sess.run([dodv, dodx], feed_dict={p: 1}), [10, 2])
self.assertAllEqual(sess.run([dodv, dodx], feed_dict={p: 2}), [40, 4])
self.assertAllEqual(sess.run([dodv, dodx], feed_dict={p: 4}), [320, 16])
# tf.map_fn() is merely a wrapper around tf.while(), but just to be sure...
示例2: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import while [as 別名]
def __init__(self, input_type=None, output_type=None, name_or_scope=None):
"""Creates the layer.
Args:
input_type: A type.
output_type: A type.
name_or_scope: A string or variable scope. If a string, a new variable
scope will be created by calling
[`create_variable_scope`](#create_variable_scope), with defaults
inherited from the current variable scope. If no caching device is set,
it will be set to `lambda op: op.device`. This is because `tf.while` can
be very inefficient if the variables it uses are not cached locally.
"""
if name_or_scope is None: name_or_scope = type(self).__name__
if isinstance(name_or_scope, tf.VariableScope):
self._vscope = name_or_scope
name = str(self._vscope.name)
elif isinstance(name_or_scope, six.string_types):
self._vscope = create_variable_scope(name_or_scope)
name = name_or_scope
else:
raise TypeError('name_or_scope must be a tf.VariableScope or a string: '
'%s' % (name_or_scope,))
if self._vscope.caching_device is None:
self._vscope.set_caching_device(lambda op: op.device)
super(Layer, self).__init__(input_type, output_type, name)
if not hasattr(self, '_constructor_name'):
self._constructor_name = '__.%s' % self.__class__.__name__
if not hasattr(self, '_constructor_args'):
self._constructor_args = None
if not hasattr(self, '_constructor_kwargs'):
self._constructor_kwargs = None
示例3: forward
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import while [as 別名]
def forward(self, image, reference):
'''Evaluates distances between images in 'image' and 'reference' (data in NHWC order).
Returns an N-element distance vector.
If 'image' is a tuple, evaluates all the images in the tuple with the same input transformations
and dropout as 'reference'. A different set of input transformations for each would result in
unnecessary uncertainty in determining which of the images is closest to the reference. The
returned value is a tuple of N-element distance vectors.'''
if isinstance(image, list):
raise Exception('Parameter \'image\' must be a tensor or a tuple of tensors.')
image_in = as_tuple(image)
def cond(i, loss_sum):
return tf.less(i, tf.cast(self.config.average_over, tf.int32))
def body(i, loss_sum):
ensemble = self.sample_ensemble(self.config)
ensemble_X = for_each(image_in, lambda X: apply_ensemble(self.config, ensemble, X))
ensemble_X = for_each(ensemble_X, lambda X: 2.0 * X - 1.0)
ensemble_R = apply_ensemble(self.config, ensemble, reference)
ensemble_R = 2.0 * ensemble_R - 1.0
loss = self.network.forward(ensemble_X, ensemble_R)
loss_sum += tf.stack(loss, axis=0)
loss_sum.set_shape([len(image_in), self.config.batch_size])
return i+1, loss_sum
if isinstance(self.config.average_over, numbers.Number) and self.config.average_over == 1:
# Skip tf.while for trivial single iterations.
_, loss_sum = body(0, tf.zeros([len(image_in), self.config.batch_size], dtype=self.config.dtype))
else:
# Run multiple times for any other average_over count.
_, loss_sum = tf.while_loop(cond, body, (0, tf.zeros([len(image_in), self.config.batch_size], dtype=self.config.dtype)), back_prop=self.back_prop)
loss_sum /= tf.cast(self.config.average_over, self.config.dtype)
if isinstance(image, tuple):
return tuple((loss_sum[i, :] for i in range(len(image))))
else:
return tf.reshape(loss_sum, [self.config.batch_size])