本文整理匯總了Python中tensorflow.variables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.variables_initializer方法的具體用法?Python tensorflow.variables_initializer怎麽用?Python tensorflow.variables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.variables_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: initialize_interdependent_variables
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def initialize_interdependent_variables(session, vars_list, feed_dict):
"""Initialize a list of variables one at a time, which is useful if
initialization of some variables depends on initialization of the others.
"""
vars_left = vars_list
while len(vars_left) > 0:
new_vars_left = []
for v in vars_left:
try:
# If using an older version of TensorFlow, uncomment the line
# below and comment out the line after it.
#session.run(tf.initialize_variables([v]), feed_dict)
session.run(tf.variables_initializer([v]), feed_dict)
except tf.errors.FailedPreconditionError:
new_vars_left.append(v)
if len(new_vars_left) >= len(vars_left):
# This can happend if the variables all depend on each other, or more likely if there's
# another variable outside of the list, that still needs to be initialized. This could be
# detected here, but life's finite.
raise Exception("Cycle in variable dependencies, or extenrnal precondition unsatisfied.")
else:
vars_left = new_vars_left
示例2: create_session
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def create_session(config_dict=dict(), force_as_default=False):
config = tf.ConfigProto()
for key, value in config_dict.items():
fields = key.split('.')
obj = config
for field in fields[:-1]:
obj = getattr(obj, field)
setattr(obj, fields[-1], value)
session = tf.Session(config=config)
if force_as_default:
session._default_session = session.as_default()
session._default_session.enforce_nesting = False
session._default_session.__enter__()
return session
#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
# tf.variables_initializer(tf.report_unitialized_variables()).run()
示例3: initialize_uninitialized_global_variables
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def initialize_uninitialized_global_variables(sess):
"""
Only initializes the variables of a TensorFlow session that were not
already initialized.
:param sess: the TensorFlow session
:return:
"""
# List all global variables
global_vars = tf.global_variables()
# Find initialized status for all variables
is_var_init = [tf.is_variable_initialized(var) for var in global_vars]
is_initialized = sess.run(is_var_init)
# List all variables that were not initialized previously
not_initialized_vars = [var for (var, init) in
zip(global_vars, is_initialized) if not init]
# Initialize all uninitialized variables found, if any
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
示例4: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def __init__(self, epsilon=1e-4, shape=(), scope=''):
sess = get_session()
self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_count = tf.placeholder(shape=(), dtype=tf.float64)
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
self.update_ops = tf.group([
self._var.assign(self._new_var),
self._mean.assign(self._new_mean),
self._count.assign(self._new_count)
])
sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
self.sess = sess
self._set_mean_var_count()
示例5: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def __init__(self, ckpt_dir, **kwargs_saver):
"""
:param ckpt_dir: where to save data
:param kwargs_saver: Passed on to the tf.train.Saver that will be created
"""
os.makedirs(ckpt_dir, exist_ok=True)
self.ckpt_dir = ckpt_dir
self.ckpt_base_file_path = path.join(ckpt_dir, _CKPT_FN)
all_saveable_vars = tf_helpers.all_saveable_objects()
var_list = kwargs_saver.get('var_list', all_saveable_vars)
var_names = VarNames(ckpt_dir)
if not var_names.exists():
print('Saver for {} saves {} variables...'.format(self.ckpt_dir, len(var_list)))
var_names.write([v.name for v in var_list])
unrestored_vars = [v for v in all_saveable_vars if v not in var_list]
if unrestored_vars:
print('Found {} unrestored variables'.format(len(unrestored_vars)))
self.init_unrestored_op = (tf.variables_initializer(unrestored_vars)
if unrestored_vars else tf.no_op())
self.saver = tf.train.Saver(**kwargs_saver)
示例6: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def __init__(self, epsilon=1e-4, shape=(), scope=''):
sess = get_session()
self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
self._new_count = tf.placeholder(shape=(), dtype=tf.float64)
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
self._mean = tf.get_variable('mean', initializer=np.zeros(shape, 'float64'), dtype=tf.float64)
self._var = tf.get_variable('std', initializer=np.ones(shape, 'float64'), dtype=tf.float64)
self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)
self.update_ops = tf.group([
self._var.assign(self._new_var),
self._mean.assign(self._new_mean),
self._count.assign(self._new_count)
])
sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
self.sess = sess
self._set_mean_var_count()
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:24,代碼來源:running_mean_std.py
示例7: test_sample_buffer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def test_sample_buffer():
capacity = 100
batch = 17
lots = 100
with tf.Graph().as_default(), tf.Session() as sess:
buffer = utils.SampleBuffer(capacity=capacity, schemas=dict(x=utils.Schema(tf.int32, ())))
tf.variables_initializer(tf.global_variables() + tf.local_variables()).run()
i_p = tf.placeholder(dtype=tf.int32, shape=())
add = buffer.add(x=batch * i_p + tf.range(batch))
sample = buffer.sample(lots, seed=7)['x']
all_data_1 = buffer.data()
all_data_2 = buffer.read(tf.range(buffer.size()))
for i in range(20):
add.run(feed_dict={i_p: i})
samples = sample.eval()
hi = batch * (i + 1)
lo = max(0, hi - capacity)
assert lo <= samples.min() <= lo + 3
assert hi - 5 <= samples.max() < hi
np.testing.assert_equal(sess.run(all_data_1), sess.run(all_data_2))
示例8: variables_initializer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def variables_initializer(var_list, name="init"):
"""Returns an Op that initializes a list of variables.
After you launch the graph in a session, you can run the returned Op to
initialize all the variables in `var_list`. This Op runs all the
initializers of the variables in `var_list` in parallel.
Calling `initialize_variables()` is equivalent to passing the list of
initializers to `Group()`.
If `var_list` is empty, however, the function still returns an Op that can
be run. That Op just has no effect.
Args:
var_list: List of `Variable` objects to initialize.
name: Optional name for the returned operation.
Returns:
An Op that run the initializers of all the specified variables.
"""
if var_list:
return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
return control_flow_ops.no_op(name=name)
示例9: initialize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def initialize(sess=None):
"""
Initialize all the uninitialized variables in the global scope.
:param sess: (TensorFlow Session)
"""
if sess is None:
sess = tf.get_default_session()
new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED
sess.run(tf.variables_initializer(new_variables))
ALREADY_INITIALIZED.update(new_variables)
# ================================================================
# Theano-like Function
# ================================================================
示例10: build_optimization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def build_optimization(self, regularization_losses, *args, **kwargs):
#kwargs to allow overriding beta1, beta2, and epsilon of adam,
# kwargs will be passed as is to Adam's initialization
assert self.adv_pred is not None, "build_model must be called before build_optimization"
assert self.output_shape is not None
self.attack_target = tf.placeholder(tf.float32, shape=self.output_shape, name="attack_target")
self.learning_rate = tf.placeholder(tf.float32, shape=(), name="learning_rate")
self.reg_names = regularization_losses
self.total_loss = self._build_loss(regularization_losses, self.adv_pred, self.attack_target, self.noise)
with tf.name_scope("adamoptimizer"):
self.optimization_op = tf.train.AdamOptimizer(learning_rate=self.learning_rate, **kwargs) \
.minimize(self.total_loss, \
var_list=[self.noise])
self.init_adam = tf.variables_initializer(filter(lambda x: "adam" in x.name.lower(), tf.global_variables()))
self.init_noise = tf.variables_initializer(set(tf.global_variables()) - set(self.model_vars))
return self.optimization_op
示例11: fit
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def fit(self, X):
"""
Fit a model given data.
:param X: array-like, shape = (n_samples, n_features)
:return:
"""
self.n_visible_units = X.shape[1]
# Initialize RBM parameters
self._build_model()
sess.run(tf.variables_initializer([self.W, self.c, self.b]))
if self.optimization_algorithm == 'sgd':
self._stochastic_gradient_descent(X)
else:
raise ValueError("Invalid optimization algorithm.")
return
示例12: _stochastic_gradient_descent
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def _stochastic_gradient_descent(self, _data):
"""
Performs stochastic gradient descend optimization algorithm.
:param _data: array-like, shape = (n_samples, n_features)
:return:
"""
for iteration in range(1, self.n_epochs + 1):
idx = np.random.permutation(len(_data))
data = _data[idx]
for batch in batch_generator(self.batch_size, data):
if len(batch) < self.batch_size:
# Pad with zeros
pad = np.zeros((self.batch_size - batch.shape[0], batch.shape[1]), dtype=batch.dtype)
batch = np.vstack((batch, pad))
sess.run(tf.variables_initializer(self.random_variables)) # Need to re-sample from uniform distribution
sess.run([self.update_W, self.update_b, self.update_c],
feed_dict={self.visible_units_placeholder: batch})
if self.verbose:
error = self._compute_reconstruction_error(data)
print(">> Epoch %d finished \tRBM Reconstruction error %f" % (iteration, error))
示例13: test_normalization
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def test_normalization():
embedding_initializer = tf.contrib.layers.xavier_initializer()
embedding_layer = tf.get_variable('embeddings', shape=[1024, 100], initializer=embedding_initializer)
unit_sphere_embeddings = constraints.unit_sphere(embedding_layer, norm=1.0)
init_op = tf.variables_initializer([embedding_layer])
with tf.Session() as session:
for _ in range(256):
session.run(init_op)
embeddings = session.run(embedding_layer)
# Use TensorFlow for normalizing the embeddings
session.run(unit_sphere_embeddings)
normalized_v1 = session.run(embedding_layer)
# Use NumPy for normalizing the embeddings
normalized_v2 = embeddings / np.linalg.norm(embeddings, axis=1).reshape((-1, 1))
np.testing.assert_allclose(normalized_v1, normalized_v2, rtol=1e-6)
示例14: _initialize_metrics
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def _initialize_metrics(self):
""" Initialize the model metrics """
self.metrics = {}
self.metric_values = {}
self.update_metrics = {}
self.reset_metrics = {}
for data_scope in (Data.TRAIN, Data.VALIDATE, Data.TEST):
metrics = self.collect_metrics(data_scope)
self.metrics[data_scope] = metrics
self.metric_values[data_scope] = {
name: metric['scalar']
for name, metric in iteritems(metrics)}
self.update_metrics[data_scope] = [
metric['update_op']
for metric in itervalues(metrics)]
metric_variables = []
with stats_utils.metric_scope(data_scope, graph=self.graph) as scope:
for local in tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope):
metric_variables.append(local)
self.reset_metrics[data_scope] = tf.variables_initializer(metric_variables)
示例15: _init_variables
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variables_initializer [as 別名]
def _init_variables(self):
""" Create the initialization operation for the variables """
# Adam optimizer uses two variables that can only be accessed through the use of a protected
# function since the variables aren't scoped in anyway. Trying to add a tf.variable_scope
# around apply_gradients where the variables are created did not help.
var_list = set(self.optimizer._get_beta_accumulators()) # pylint: disable=protected-access
slot_names = self.optimizer.get_slot_names()
for tower in self.towers:
variables = tower.global_variables
var_list.update(variables)
for slot_name in slot_names:
for variable in variables:
slot = self.optimizer.get_slot(variable, slot_name)
if slot is not None:
var_list.add(slot)
# Initialize all the variables
self.initialization_operation = tf.group(
tf.variables_initializer(var_list),
# Apparently local variables are not part of 'all' variables... go figure
# This is needed for metrics for example
tf.local_variables_initializer())