當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.variable_scope方法代碼示例

本文整理匯總了Python中tensorflow.variable_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.variable_scope方法的具體用法?Python tensorflow.variable_scope怎麽用?Python tensorflow.variable_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.variable_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stackedRNN

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def stackedRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units):
        n_hidden=hidden_units
        n_layers=3
        # Prepare data shape to match `static_rnn` function requirements
        x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
        # print(x)
        # Define lstm cells with tensorflow
        # Forward direction cell

        with tf.name_scope("fw"+scope),tf.variable_scope("fw"+scope):
            stacked_rnn_fw = []
            for _ in range(n_layers):
                fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
                lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell,output_keep_prob=dropout)
                stacked_rnn_fw.append(lstm_fw_cell)
            lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True)

            outputs, _ = tf.nn.static_rnn(lstm_fw_cell_m, x, dtype=tf.float32)
        return outputs[-1] 
開發者ID:dhwajraj,項目名稱:deep-siamese-text-similarity,代碼行數:21,代碼來源:siamese_network_semantic.py

示例2: wrap_variable

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def wrap_variable(self, var):
        """wrap layer.w into variables"""
        val = self.lay.w.get(var, None)
        if val is None:
            shape = self.lay.wshape[var]
            args = [0., 1e-2, shape]
            if 'moving_mean' in var:
                val = np.zeros(shape)
            elif 'moving_variance' in var:
                val = np.ones(shape)
            else:
                val = np.random.normal(*args)
            self.lay.w[var] = val.astype(np.float32)
            self.act = 'Init '
        if not self.var: return

        val = self.lay.w[var]
        self.lay.w[var] = tf.constant_initializer(val)
        if var in self._SLIM: return
        with tf.variable_scope(self.scope):
            self.lay.w[var] = tf.get_variable(var,
                shape = self.lay.wshape[var],
                dtype = tf.float32,
                initializer = self.lay.w[var]) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:26,代碼來源:baseop.py

示例3: normalize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def normalize(inputs,
              scope="normalize",
              reuse=None):
    '''Applies layer normalization that normalizes along the last axis.

    Args:
      inputs: A tensor with 2 or more dimensions, where the first dimension has
        `batch_size`. The normalization is over the last dimension.
      scope: Optional scope for `variable_scope`.
      reuse: Boolean, whether to reuse the weights of a previous layer
        by the same name.

    Returns:
      A tensor with the same shape and data dtype as `inputs`.
    '''
    outputs = tf.contrib.layers.layer_norm(inputs,
                                           begin_norm_axis=-1,
                                           scope=scope,
                                           reuse=reuse)
    return outputs 
開發者ID:Kyubyong,項目名稱:dc_tts,代碼行數:22,代碼來源:modules.py

示例4: highwaynet

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def highwaynet(inputs, num_units=None, scope="highwaynet", reuse=None):
    '''Highway networks, see https://arxiv.org/abs/1505.00387

    Args:
      inputs: A 3D tensor of shape [N, T, W].
      num_units: An int or `None`. Specifies the number of units in the highway layer
             or uses the input size if `None`.
      scope: Optional scope for `variable_scope`.
      reuse: Boolean, whether to reuse the weights of a previous layer
        by the same name.

    Returns:
      A 3D tensor of shape [N, T, W].
    '''
    if not num_units:
        num_units = inputs.get_shape()[-1]

    with tf.variable_scope(scope, reuse=reuse):
        H = tf.layers.dense(inputs, units=num_units, activation=tf.nn.relu, name="dense1")
        T = tf.layers.dense(inputs, units=num_units, activation=tf.nn.sigmoid,
                            bias_initializer=tf.constant_initializer(-1.0), name="dense2")
        outputs = H * T + inputs * (1. - T)
    return outputs 
開發者ID:Kyubyong,項目名稱:dc_tts,代碼行數:25,代碼來源:modules.py

示例5: block35

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 35x35 resnet block."""
  with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
    with tf.variable_scope('Branch_2'):
      tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
      tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:inception_resnet_v2.py

示例6: block17

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 17x17 resnet block."""
  with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
                                  scope='Conv2d_0b_1x7')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
                                  scope='Conv2d_0c_7x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:inception_resnet_v2.py

示例7: block8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 8x8 resnet block."""
  with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
                                  scope='Conv2d_0b_1x3')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
                                  scope='Conv2d_0c_3x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    net += scale * up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:inception_resnet_v2.py

示例8: fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def fprop(self, x, **kwargs):
        del kwargs
        my_conv = functools.partial(tf.layers.conv2d,
                                    kernel_size=3,
                                    strides=2,
                                    padding='valid',
                                    activation=tf.nn.relu,
                                    kernel_initializer=HeReLuNormalInitializer)
        my_dense = functools.partial(
            tf.layers.dense, kernel_initializer=HeReLuNormalInitializer)

        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            for depth in [96, 256, 384, 384, 256]:
                x = my_conv(x, depth)
            y = tf.layers.flatten(x)
            y = my_dense(y, 4096, tf.nn.relu)
            y = fc7 = my_dense(y, 4096, tf.nn.relu)
            y = my_dense(y, 1000)
            return {'fc7': fc7,
                    self.O_LOGITS: y,
                    self.O_PROBS: tf.nn.softmax(logits=y)} 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:model.py

示例9: setUp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def setUp(self):
        super(TestRunnerMultiGPU, self).setUp()
        self.sess = tf.Session()

        inputs = []
        outputs = []
        self.niter = 10
        niter = self.niter
        # A Simple graph with `niter` sub-graphs.
        with tf.variable_scope(None, 'runner'):
            for i in range(niter):
                v = tf.get_variable('v%d' % i, shape=(100, 10))
                w = tf.get_variable('w%d' % i, shape=(100, 1))

                inputs += [{'v': v, 'w': w}]
                outputs += [{'v': v, 'w': w}]

        self.runner = RunnerMultiGPU(inputs, outputs, sess=self.sess) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:test_runner.py

示例10: preprocess_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def preprocess_batch(images_batch, preproc_func=None):
    """
    Creates a preprocessing graph for a batch given a function that processes
    a single image.

    :param images_batch: A tensor for an image batch.
    :param preproc_func: (optional function) A function that takes in a
        tensor and returns a preprocessed input.
    """
    if preproc_func is None:
        return images_batch

    with tf.variable_scope('preprocess'):
        images_list = tf.split(images_batch, int(images_batch.shape[0]))
        result_list = []
        for img in images_list:
            reshaped_img = tf.reshape(img, img.shape[1:])
            processed_img = preproc_func(reshaped_img)
            result_list.append(tf.expand_dims(processed_img, axis=0))
        result_images = tf.concat(result_list, axis=0)
    return result_images 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:utils.py

示例11: set_input_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def set_input_shape(self, input_shape):
        batch_size, rows, cols, input_channels = input_shape
        kernel_shape = tuple(self.kernel_shape) + (input_channels,
                                                   self.output_channels)
        assert len(kernel_shape) == 4
        assert all(isinstance(e, int) for e in kernel_shape), kernel_shape
        with tf.variable_scope(self.name):
            init = tf.truncated_normal(kernel_shape, stddev=0.1)
            self.kernels = self.get_variable(self.w_name, init)
            self.b = self.get_variable(
                'b', .1 + np.zeros((self.output_channels,)).astype('float32'))
        input_shape = list(input_shape)
        self.input_shape = input_shape
        input_shape[0] = 1
        dummy_batch = tf.zeros(input_shape)
        dummy_output = self.fprop(dummy_batch)
        output_shape = [int(e) for e in dummy_output.get_shape()]
        output_shape[0] = 1
        self.output_shape = tuple(output_shape) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:model.py

示例12: build_cost

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def build_cost(self, labels, logits):
        """
        Build the graph for cost from the logits if logits are provided.
        If predictions are provided, logits are extracted from the operation.
        """
        op = logits.op
        if "softmax" in str(op).lower():
            logits, = op.inputs

        with tf.variable_scope('costs'):
            xent = tf.nn.softmax_cross_entropy_with_logits(
                logits=logits, labels=labels)
            cost = tf.reduce_mean(xent, name='xent')
            cost += self._decay()
            cost = cost

        return cost 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:resnet_tf.py

示例13: run_eval

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def run_eval(sess, test_X, test_y):
    ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
    ds = ds.batch(1)
    X, y = ds.make_one_shot_iterator().get_next()

    with tf.variable_scope("model", reuse=True):
        prediction, _, _ = lstm_model(X, [0.0], False)
        predictions = []
        labels = []
        for i in range(TESTING_EXAMPLES):
            p, l = sess.run([prediction, y])
            predictions.append(p)
            labels.append(l)

    predictions = np.array(predictions).squeeze()
    labels = np.array(labels).squeeze()
    rmse = np.sqrt(((predictions-labels) ** 2).mean(axis=0))
    print("Mean Square Error is: %f" % rmse)

    plt.figure()
    plt.plot(predictions, label='predictions')
    plt.plot(labels, label='real_sin')
    plt.legend()
    plt.show() 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:26,代碼來源:simulate_sin.py

示例14: build_permutation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def build_permutation(self):

        with tf.variable_scope("encoder"):
            
            with tf.variable_scope("embedding"):
                # Embed input sequence
                W_embed =tf.get_variable("weights", [1,self.input_dimension+2, self.input_embed], initializer=self.initializer) # +2 for TW feat. here too
                embedded_input = tf.nn.conv1d(self.input_, W_embed, 1, "VALID", name="embedded_input")
                # Batch Normalization
                embedded_input = tf.layers.batch_normalization(embedded_input, axis=2, training=self.is_training, name='layer_norm', reuse=None)

            with tf.variable_scope("dynamic_rnn"):
                # Encode input sequence
                cell1 = LSTMCell(self.num_neurons, initializer=self.initializer)  # BNLSTMCell(self.num_neurons, self.training) or cell1 = DropoutWrapper(cell1, output_keep_prob=0.9)
                # Return the output activations [Batch size, Sequence Length, Num_neurons] and last hidden state as tensors.
                encoder_output, encoder_state = tf.nn.dynamic_rnn(cell1, embedded_input, dtype=tf.float32)

        with tf.variable_scope('decoder'):
            # Ptr-net returns permutations (self.positions), with their log-probability for backprop
            self.ptr = Pointer_decoder(encoder_output, self.config)
            self.positions, self.log_softmax, self.attending, self.pointing = self.ptr.loop_decode(encoder_state)
            variable_summaries('log_softmax',self.log_softmax, with_max_min = True) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:24,代碼來源:actor.py

示例15: feedforward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import variable_scope [as 別名]
def feedforward(inputs, num_units=[2048, 512], is_training=True):

    with tf.variable_scope("ffn", reuse=None):
        # Inner layer
        params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1, "activation": tf.nn.relu, "use_bias": True}
        outputs = tf.layers.conv1d(**params)
        
        # Readout layer
        params = {"inputs": outputs, "filters": num_units[1], "kernel_size": 1, "activation": None, "use_bias": True}
        outputs = tf.layers.conv1d(**params)
        
        # Residual connection
        outputs += inputs
        
        # Normalize
        outputs = tf.layers.batch_normalization(outputs, axis=2, training=is_training, name='ln', reuse=None)  # [batch_size, seq_length, n_hidden]
    
    return outputs 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:20,代碼來源:encoder.py


注:本文中的tensorflow.variable_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。