本文整理匯總了Python中tensorflow.unsorted_segment_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.unsorted_segment_sum方法的具體用法?Python tensorflow.unsorted_segment_sum怎麽用?Python tensorflow.unsorted_segment_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.unsorted_segment_sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: embedding_lookup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def embedding_lookup(embedding_matrix, indices, ids, weights, size):
"""Performs a weighted embedding lookup.
Args:
embedding_matrix: float Tensor from which to do the lookup.
indices: int Tensor for the output rows of the looked up vectors.
ids: int Tensor vectors to look up in the embedding_matrix.
weights: float Tensor weights to apply to the looked up vectors.
size: int number of output rows. Needed since some output rows may be
empty.
Returns:
Weighted embedding vectors.
"""
embeddings = tf.nn.embedding_lookup([embedding_matrix], ids)
# TODO(googleuser): allow skipping weights.
broadcast_weights_shape = tf.concat([tf.shape(weights), [1]], 0)
embeddings *= tf.reshape(weights, broadcast_weights_shape)
embeddings = tf.unsorted_segment_sum(embeddings, indices, size)
return embeddings
示例2: combine
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# see comments on convert_gradient_to_tensor
stitched = common_layers.convert_gradient_to_tensor(
tf.concat(expert_out, 0))
if multiply_by_gates:
stitched *= tf.expand_dims(self._nonzero_gates, 1)
combined = tf.unsorted_segment_sum(stitched, self._batch_index,
tf.shape(self._gates)[0])
return combined
示例3: _deduplicate_indexed_slices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(
values, new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例4: combine
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def combine(self, x):
"""Return the output from the experts.
When one example goes to multiple experts, the outputs are summed.
Args:
x: a Tensor with shape [batch, num_experts, expert_capacity, depth]
Returns:
a `Tensor` with shape `[batch, length, depth]
"""
depth = tf.shape(x)[-1]
x *= tf.expand_dims(self._nonpadding, -1)
ret = tf.unsorted_segment_sum(
x, self._flat_indices, num_segments=self._batch * self._length)
ret = tf.reshape(ret, [self._batch, self._length, depth])
return ret
示例5: apply_attention
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def apply_attention(attn_scores, states, length, is_self=False, with_sentinel=True, reuse=False, seq2_to_seq1=None):
attn_scores += tf.expand_dims(misc.mask_for_lengths(length, tf.shape(attn_scores)[2]), 1)
softmax = tf.nn.softmax if seq2_to_seq1 is None else lambda x: segment.segment_softmax(x, seq2_to_seq1)
if is_self:
# exclude attending to state itself
attn_scores += tf.expand_dims(tf.diag(tf.fill([tf.shape(attn_scores)[1]], -1e6)), 0)
if with_sentinel:
with tf.variable_scope('sentinel', reuse=reuse):
s = tf.get_variable('score', [1, 1, 1], tf.float32, tf.zeros_initializer())
s = tf.tile(s, [tf.shape(attn_scores)[0], tf.shape(attn_scores)[1], 1])
attn_probs = softmax(tf.concat([s, attn_scores], 2))
attn_probs = attn_probs[:, :, 1:]
else:
attn_probs = softmax(attn_scores)
attn_states = tf.einsum('abd,adc->abc', attn_probs, states)
if seq2_to_seq1 is not None:
attn_states = tf.unsorted_segment_sum(attn_states, seq2_to_seq1, tf.reduce_max(seq2_to_seq1) + 1)
return attn_scores, attn_probs, attn_states
示例6: segment_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def segment_softmax(scores, segment_ids):
"""Given scores and a partition, converts scores to probs by performing
softmax over all rows within a partition."""
# Subtract max
num_segments = tf.reduce_max(segment_ids) + 1
if len(scores.get_shape()) == 2:
max_per_partition = tf.unsorted_segment_max(tf.reduce_max(scores, axis=1), segment_ids, num_segments)
scores -= tf.expand_dims(tf.gather(max_per_partition, segment_ids), axis=1)
else:
max_per_partition = tf.unsorted_segment_max(scores, segment_ids, num_segments)
scores -= tf.gather(max_per_partition, segment_ids)
# Compute probs
scores_exp = tf.exp(scores)
if len(scores.get_shape()) == 2:
scores_exp_sum_per_partition = tf.unsorted_segment_sum(tf.reduce_sum(scores_exp, axis=1), segment_ids,
num_segments)
probs = scores_exp / tf.expand_dims(tf.gather(scores_exp_sum_per_partition, segment_ids), axis=1)
else:
scores_exp_sum_per_partition = tf.unsorted_segment_sum(scores_exp, segment_ids, num_segments)
probs = scores_exp / tf.gather(scores_exp_sum_per_partition, segment_ids)
return probs
示例7: testValues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3])
num_segments = 12
for indices in indices_flat, indices_flat.reshape(5, 2):
shape = indices.shape + (2,)
for dtype in dtypes:
with self.test_session(use_gpu=self.use_gpu):
tf_x, np_x = self._input(shape, dtype=dtype)
np_ans = self._segmentReduce(indices,
np_x,
np.add,
op2=None,
num_out_rows=num_segments)
s = tf.unsorted_segment_sum(data=tf_x,
segment_ids=indices,
num_segments=num_segments)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
self.assertShapeEqual(np_ans, s)
示例8: testGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def testGradient(self):
num_cols = 2
indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3])
num_segments = max(indices_flat) + 3
for indices in indices_flat, indices_flat.reshape(5, 2):
shape = indices.shape + (num_cols,)
with self.test_session(use_gpu=self.use_gpu):
tf_x, np_x = self._input(shape, dtype=tf.float64)
s = tf.unsorted_segment_sum(data=tf_x,
segment_ids=indices,
num_segments=num_segments)
jacob_t, jacob_n = tf.test.compute_gradient(
tf_x,
shape,
s,
[num_segments, num_cols],
x_init_value=np_x.astype(np.double),
delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
示例9: Combine
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def Combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# see comments on ConvertGradientToTensor
stitched = ConvertGradientToTensor(tf.concat(expert_out, 0))
if multiply_by_gates:
stitched *= tf.expand_dims(self._nonzero_gates, 1)
combined = tf.unsorted_segment_sum(stitched, self._batch_index,
tf.shape(self._gates)[0])
return combined
示例10: find_dup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def find_dup(a):
""" Find the duplicated elements in 1-D a tensor.
Args:
a: 1-D tensor.
Return:
more_than_one_vals: duplicated value in a.
indexes_in_a: duplicated value's index in a.
dups_in_a: duplicated value with duplicate in a.
"""
unique_a_vals, unique_idx = tf.unique(a)
count_a_unique = tf.unsorted_segment_sum(tf.ones_like(a),
unique_idx,
tf.shape(a)[0])
more_than_one = tf.greater(count_a_unique, 1)
more_than_one_idx = tf.squeeze(tf.where(more_than_one))
more_than_one_vals = tf.squeeze(tf.gather(unique_a_vals, more_than_one_idx))
not_duplicated, _ = tf.setdiff1d(a, more_than_one_vals)
dups_in_a, indexes_in_a = tf.setdiff1d(a, not_duplicated)
return more_than_one_vals, indexes_in_a, dups_in_a
示例11: unsorted_segment_log_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def unsorted_segment_log_softmax(logits, segment_ids, num_segments):
"""Perform an unsorted segment safe log_softmax."""
# Note: if a segment is empty, the smallest value for the score will be returned,
# which yields the correct behavior
max_per_segment = tf.unsorted_segment_max(data=logits,
segment_ids=segment_ids,
num_segments=num_segments)
scattered_maxes = tf.gather(params=max_per_segment,
indices=segment_ids)
recentered_scores = logits - scattered_maxes
exped_recentered_scores = tf.exp(recentered_scores)
per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments)
per_segment_normalization_consts = tf.log(per_segment_sums)
log_probs = recentered_scores - tf.gather(params=per_segment_normalization_consts, indices=segment_ids)
return log_probs
示例12: _deduplicate_indexed_slices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(values,
new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例13: extract_fixed_feature_ids
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def extract_fixed_feature_ids(comp, state, stride):
"""Extracts fixed feature IDs.
Args:
comp: Component whose fixed feature IDs we wish to extract.
state: Live MasterState object for the component.
stride: Tensor containing current batch * beam size.
Returns:
state handle: Updated state handle to be used after this call.
ids: List of [stride * num_steps, 1] feature IDs per channel. Missing IDs
(e.g., due to batch padding) are set to -1.
"""
num_channels = len(comp.spec.fixed_feature)
if not num_channels:
return state.handle, []
for feature_spec in comp.spec.fixed_feature:
check.Eq(feature_spec.size, 1, 'All features must have size=1')
check.Lt(feature_spec.embedding_dim, 0, 'All features must be non-embedded')
state.handle, indices, ids, _, num_steps = dragnn_ops.bulk_fixed_features(
state.handle, component=comp.name, num_channels=num_channels)
size = stride * num_steps
fixed_ids = []
for channel, feature_spec in enumerate(comp.spec.fixed_feature):
tf.logging.info('[%s] Adding fixed feature IDs "%s"', comp.name,
feature_spec.name)
# The +1 and -1 increments ensure that missing IDs default to -1.
#
# TODO(googleuser): This formula breaks if multiple IDs are extracted at some
# step. Try using tf.unique() to enforce the unique-IDS precondition.
sums = tf.unsorted_segment_sum(ids[channel] + 1, indices[channel], size) - 1
sums = tf.expand_dims(sums, axis=1)
fixed_ids.append(network_units.NamedTensor(sums, feature_spec.name, dim=1))
return state.handle, fixed_ids
示例14: EmbeddingLookupFeatures
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def EmbeddingLookupFeatures(params, sparse_features, allow_weights):
"""Computes embeddings for each entry of sparse features sparse_features.
Args:
params: list of 2D tensors containing vector embeddings
sparse_features: 1D tensor of strings. Each entry is a string encoding of
dist_belief.SparseFeatures, and represents a variable length list of
feature ids, and optionally, corresponding weights values.
allow_weights: boolean to control whether the weights returned from the
SparseFeatures are used to multiply the embeddings.
Returns:
A tensor representing the combined embeddings for the sparse features.
For each entry s in sparse_features, the function looks up the embeddings
for each id and sums them into a single tensor weighing them by the
weight of each id. It returns a tensor with each entry of sparse_features
replaced by this combined embedding.
"""
if not isinstance(params, list):
params = [params]
# Lookup embeddings.
sparse_features = tf.convert_to_tensor(sparse_features)
indices, ids, weights = gen_parser_ops.unpack_syntax_net_sparse_features(
sparse_features)
embeddings = tf.nn.embedding_lookup(params, ids)
if allow_weights:
# Multiply by weights, reshaping to allow broadcast.
broadcast_weights_shape = tf.concat([tf.shape(weights), [1]], 0)
embeddings *= tf.reshape(weights, broadcast_weights_shape)
# Sum embeddings by index.
return tf.unsorted_segment_sum(embeddings, indices, tf.size(sparse_features))
示例15: _rowwise_unsorted_segment_sum
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_sum [as 別名]
def _rowwise_unsorted_segment_sum(values, indices, n):
"""UnsortedSegmentSum on each row.
Args:
values: a `Tensor` with shape `[batch_size, k]`.
indices: an integer `Tensor` with shape `[batch_size, k]`.
n: an integer.
Returns:
A `Tensor` with the same type as `values` and shape `[batch_size, n]`.
"""
batch, k = tf.unstack(tf.shape(indices), num=2)
indices_flat = tf.reshape(indices, [-1]) + tf.div(tf.range(batch * k), k) * n
ret_flat = tf.unsorted_segment_sum(
tf.reshape(values, [-1]), indices_flat, batch * n)
return tf.reshape(ret_flat, [batch, n])