本文整理匯總了Python中tensorflow.unsorted_segment_max方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.unsorted_segment_max方法的具體用法?Python tensorflow.unsorted_segment_max怎麽用?Python tensorflow.unsorted_segment_max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.unsorted_segment_max方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: segment_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def segment_softmax(scores, segment_ids):
"""Given scores and a partition, converts scores to probs by performing
softmax over all rows within a partition."""
# Subtract max
num_segments = tf.reduce_max(segment_ids) + 1
if len(scores.get_shape()) == 2:
max_per_partition = tf.unsorted_segment_max(tf.reduce_max(scores, axis=1), segment_ids, num_segments)
scores -= tf.expand_dims(tf.gather(max_per_partition, segment_ids), axis=1)
else:
max_per_partition = tf.unsorted_segment_max(scores, segment_ids, num_segments)
scores -= tf.gather(max_per_partition, segment_ids)
# Compute probs
scores_exp = tf.exp(scores)
if len(scores.get_shape()) == 2:
scores_exp_sum_per_partition = tf.unsorted_segment_sum(tf.reduce_sum(scores_exp, axis=1), segment_ids,
num_segments)
probs = scores_exp / tf.expand_dims(tf.gather(scores_exp_sum_per_partition, segment_ids), axis=1)
else:
scores_exp_sum_per_partition = tf.unsorted_segment_sum(scores_exp, segment_ids, num_segments)
probs = scores_exp / tf.gather(scores_exp_sum_per_partition, segment_ids)
return probs
示例2: unsorted_segment_log_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def unsorted_segment_log_softmax(logits, segment_ids, num_segments):
"""Perform an unsorted segment safe log_softmax."""
# Note: if a segment is empty, the smallest value for the score will be returned,
# which yields the correct behavior
max_per_segment = tf.unsorted_segment_max(data=logits,
segment_ids=segment_ids,
num_segments=num_segments)
scattered_maxes = tf.gather(params=max_per_segment,
indices=segment_ids)
recentered_scores = logits - scattered_maxes
exped_recentered_scores = tf.exp(recentered_scores)
per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments)
per_segment_normalization_consts = tf.log(per_segment_sums)
log_probs = recentered_scores - tf.gather(params=per_segment_normalization_consts, indices=segment_ids)
return log_probs
示例3: get_pixel_value
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def get_pixel_value(img, x, y):
"""Cantor pairing for removing non-unique updates and indices. At the time of implementation, unfixed issue with scatter_nd causes problems with int32 update values. Till resolution, implemented on cpu """
with tf.device('/cpu:0'):
indices = tf.stack([y, x], 2)
indices = tf.reshape(indices, (375*1242, 2))
values = tf.reshape(img, [-1])
Y = indices[:,0]
X = indices[:,1]
Z = (X + Y)*(X + Y + 1)/2 + Y
filtered, idx = tf.unique(tf.squeeze(Z))
updated_values = tf.unsorted_segment_max(values, idx, tf.shape(filtered)[0])
# updated_indices = tf.map_fn(fn=lambda i: reverse(i), elems=filtered, dtype=tf.float32)
updated_indices = reverse_all(filtered)
updated_indices = tf.cast(updated_indices, 'int32')
resolved_map = tf.scatter_nd(updated_indices, updated_values, img.shape)
return resolved_map
示例4: aggregate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def aggregate(data, agg_idx, new_size, method="sum"):
""" Aggregate data
Args:
data: tf tensor, see "unsorted_segment_x" in tf documents for more detail
agg_idx: tf tensor of int, index for aggregation
new_size: tf tensor of int, size of the data after aggregation
method: aggregation method
Returns:
agg_data: tf tensor, aggregated data
"""
if method == "sum":
agg_data = tf.unsorted_segment_sum(data, agg_idx, new_size)
elif method == "avg":
agg_data = tf.unsorted_segment_sum(data, agg_idx, new_size)
denom_const = tf.unsorted_segment_sum(tf.ones_like(data), agg_idx, new_size)
agg_data = tf.div(agg_data, (denom_const + tf.constant(1.0e-10)))
elif method == "max":
agg_data = tf.unsorted_segment_max(data, agg_idx, new_size)
elif method == "min":
agg_data = tf.unsorted_segment_max(-data, agg_idx, new_size)
else:
raise ValueError("Unsupported aggregation method!")
return agg_data
示例5: xqa_crossentropy_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def xqa_crossentropy_loss(start_scores, end_scores, answer_span, answer2support, support2question, use_sum=True):
"""Very common XQA loss function."""
num_questions = tf.reduce_max(support2question) + 1
start, end = answer_span[:, 0], answer_span[:, 1]
start_probs = segment_softmax(start_scores, support2question)
start_probs = tf.gather_nd(start_probs, tf.stack([answer2support, start], 1))
# only start probs are normalized on multi-paragraph, end probs conditioned on start only on per support level
num_answers = tf.shape(answer_span)[0]
is_aligned = tf.equal(tf.shape(end_scores)[0], num_answers)
end_probs = tf.cond(
is_aligned,
lambda: tf.gather_nd(tf.nn.softmax(end_scores), tf.stack([tf.range(num_answers, dtype=tf.int32), end], 1)),
lambda: tf.gather_nd(segment_softmax(end_scores, support2question), tf.stack([answer2support, end], 1))
)
answer2question = tf.gather(support2question, answer2support)
# compute losses individually
if use_sum:
span_probs = tf.unsorted_segment_sum(
start_probs, answer2question, num_questions) * tf.unsorted_segment_sum(
end_probs, answer2question, num_questions)
else:
span_probs = tf.unsorted_segment_max(
start_probs, answer2question, num_questions) * tf.unsorted_segment_max(
end_probs, answer2question, num_questions)
return -tf.reduce_mean(tf.log(tf.maximum(1e-6, span_probs + 1e-6)))
示例6: segment_is_max
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def segment_is_max(inputs, segment_ids):
num_segments = tf.reduce_max(segment_ids) + 1
if len(inputs.get_shape()) > 1:
inputs_max = tf.reduce_max(inputs, reduction_indices=list(range(1, len(inputs.get_shape()))))
else:
inputs_max = inputs
max_per_partition = tf.unsorted_segment_max(inputs_max, segment_ids, num_segments)
return tf.equal(inputs, tf.gather(max_per_partition, segment_ids))
示例7: get_component_bounds
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def get_component_bounds(image):
"""Returns the bounding box of each connected component in `image`.
Connected components are segments of adjacent True pixels in the image.
Args:
image: A 2D boolean image tensor.
Returns:
A tensor of shape (num_components, 5), where each row represents a connected
component of the image as `(x0, y0, x1, y1, size)`. `size` is the count
of True pixels in the component, and the coordinates are the top left
and bottom right corners of the bounding box.
"""
with tf.name_scope('get_component_bounds'):
components = tf.contrib.image.connected_components(image)
num_components = tf.reduce_max(components) + 1
width = tf.shape(image)[1]
height = tf.shape(image)[0]
xs, ys = tf.meshgrid(tf.range(width), tf.range(height))
component_x0 = _unsorted_segment_min(xs, components, num_components)[1:]
component_x1 = tf.unsorted_segment_max(xs, components, num_components)[1:]
component_y0 = _unsorted_segment_min(ys, components, num_components)[1:]
component_y1 = tf.unsorted_segment_max(ys, components, num_components)[1:]
component_size = tf.bincount(components)[1:]
return tf.stack([
component_x0, component_y0, component_x1, component_y1, component_size
],
axis=1)
示例8: _unsorted_segment_min
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def _unsorted_segment_min(data, segment_ids, num_segments):
return -tf.unsorted_segment_max(-data, segment_ids, num_segments)
示例9: get_aggregation_function
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def get_aggregation_function(aggregation_fun: Optional[str]):
if aggregation_fun in ['sum', 'unsorted_segment_sum']:
return tf.unsorted_segment_sum
if aggregation_fun in ['max', 'unsorted_segment_max']:
return tf.unsorted_segment_max
if aggregation_fun in ['mean', 'unsorted_segment_mean']:
return tf.unsorted_segment_mean
if aggregation_fun in ['sqrt_n', 'unsorted_segment_sqrt_n']:
return tf.unsorted_segment_sqrt_n
else:
raise ValueError("Unknown aggregation function '%s'!" % aggregation_fun)
示例10: unsorted_segment_logsumexp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def unsorted_segment_logsumexp(scores, segment_ids, num_segments):
"""Perform an unsorted segment safe logsumexp."""
# Note: if a segment is empty, the smallest value for the score will be returned,
# which yields the correct behavior
max_per_segment = tf.unsorted_segment_max(data=scores,
segment_ids=segment_ids,
num_segments=num_segments)
scattered_log_maxes = tf.gather(params=max_per_segment,
indices=segment_ids)
recentered_scores = scores - scattered_log_maxes
exped_recentered_scores = tf.exp(recentered_scores)
per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments)
per_segment_logs = tf.log(per_segment_sums)
return per_segment_logs + max_per_segment
示例11: unsorted_segment_softmax
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def unsorted_segment_softmax(logits, segment_ids, num_segments):
"""Perform a safe unsorted segment softmax."""
max_per_segment = tf.unsorted_segment_max(data=logits,
segment_ids=segment_ids,
num_segments=num_segments)
scattered_maxes = tf.gather(params=max_per_segment,
indices=segment_ids)
recentered_scores = logits - scattered_maxes
exped_recentered_scores = tf.exp(recentered_scores)
per_segment_sums = tf.unsorted_segment_sum(exped_recentered_scores, segment_ids, num_segments)
probs = exped_recentered_scores / (tf.gather(params=per_segment_sums, indices=segment_ids) + SMALL_NUMBER)
return probs
示例12: vertical_run_length_encoding
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unsorted_segment_max [as 別名]
def vertical_run_length_encoding(image):
"""Returns the runs in each column of the image.
A run is a subsequence of consecutive pixels that all have the same value.
Internally, we treat the image as batches of single-column images in order to
use connected component analysis.
Args:
image: A 2D image.
Returns:
The column index of each vertical run.
The value in the image for each vertical run.
The length of each vertical run.
"""
with tf.name_scope('run_length_encoding'):
image = tf.convert_to_tensor(image, name='image', dtype=tf.bool)
# Set arbitrary, distinct, nonzero values for True and False pixels.
# True pixels map to 2, and False pixels map to 1.
# Transpose the image, and insert an extra dimension. This creates a batch
# of "images" for connected component analysis, where each image is a single
# column of the original image. Therefore, the connected components are
# actually runs from a single column.
components = tf.contrib.image.connected_components(
tf.to_int32(tf.expand_dims(tf.transpose(image), axis=1)) + 1)
# Flatten in order to use with unsorted segment ops.
flat_components = tf.reshape(components, [-1])
num_components = tf.maximum(0, tf.reduce_max(components) + 1)
# Get the column index corresponding to each pixel present in
# flat_components.
column_indices = tf.reshape(
tf.tile(
# Count 0 through `width - 1` on axis 0, then repeat each element
# `height` times.
tf.expand_dims(tf.range(tf.shape(image)[1]), axis=1),
multiples=[1, tf.shape(image)[0]]),
# pyformat: disable
[-1])
# Take the column index for each component. For each component index k,
# we want any entry of column_indices where the corresponding entry in
# flat_components is k. column_indices should be the same for all pixels in
# the same component, so we can just take the max of all of them. Disregard
# component 0, which just represents all of the zero pixels across the
# entire array (should be empty, because we pass in a nonzero image).
component_columns = tf.unsorted_segment_max(column_indices, flat_components,
num_components)[1:]
# Take the original value of each component. Again, the value should be the
# same for all pixels in a single component, so we can just take the max.
component_values = tf.unsorted_segment_max(
tf.to_int32(tf.reshape(tf.transpose(image), [-1])), flat_components,
num_components)[1:]
# Take the length of each component (run), by counting the number of pixels
# in the component.
component_lengths = tf.to_int32(tf.bincount(flat_components)[1:])
return component_columns, component_values, component_lengths