當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.unique_with_counts方法代碼示例

本文整理匯總了Python中tensorflow.unique_with_counts方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.unique_with_counts方法的具體用法?Python tensorflow.unique_with_counts怎麽用?Python tensorflow.unique_with_counts使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.unique_with_counts方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: knn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def knn(X_test, X_ref, Y_ref, K = 5):
	

	nearest_neighbors=tf.Variable(tf.zeros([K]))

	distance = tf.negative(tf.reduce_sum(tf.abs(tf.subtract(X_ref, X_test[0])),axis=1)) #L1
	values,indices=tf.nn.top_k(distance,k=K,sorted=False)

	nn = []
	
	for k in range(K):
		nn.append(tf.argmax(Y_ref[indices[k]], 0)) 

	nearest_neighbors=nn
	y, idx, count = tf.unique_with_counts(nearest_neighbors)

	preds = tf.slice(y, begin=[tf.argmax(count, 0)], size=tf.constant([1], dtype=tf.int64))[0]
		
	return preds 
開發者ID:pmorerio,項目名稱:minimal-entropy-correlation-alignment,代碼行數:21,代碼來源:utils.py

示例2: sparse_tensor_left_align

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def sparse_tensor_left_align(sparse_tensor):
  """Re-arranges a `tf.SparseTensor` and returns a left-aligned version of it.

  This mapper can be useful when returning a sparse tensor that may not be
  left-aligned from a preprocessing_fn.

  Args:
    sparse_tensor: A `tf.SparseTensor`.

  Returns:
    A left-aligned version of sparse_tensor as a `tf.SparseTensor`.
  """
  reordered_tensor = tf.sparse.reorder(sparse_tensor)
  transposed_indices = tf.transpose(reordered_tensor.indices)
  row_indices = transposed_indices[0]
  row_counts = tf.unique_with_counts(row_indices, out_idx=tf.int64).count
  column_indices = tf.ragged.range(row_counts).flat_values
  return tf.SparseTensor(
      indices=tf.transpose(tf.stack([row_indices, column_indices])),
      values=reordered_tensor.values,
      dense_shape=reordered_tensor.dense_shape) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:23,代碼來源:mappers.py

示例3: repeat_with_index

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def repeat_with_index(x: tf.Tensor, index: tf.Tensor, axis: int = 1):
    """
    Given an tensor x (N*M*K), repeat the middle axis (axis=1)
    according to the index tensor index (G, )
    for example, if axis=1 and n = Tensor([0, 0, 0, 1, 2, 2])
    then M = 3 (3 unique values),
    and the final tensor would have the shape (N*6*3) with the
    first one in M repeated 3 times,
    second 1 time and third 2 times.

     Args:
        x: (3d Tensor) tensor to be augmented
        index: (1d Tensor) repetition tensor
        axis: (int) axis for repetition
    Returns:
        (3d Tensor) tensor after repetition
    """
    index = tf.reshape(index, (-1,))
    _, _, n = tf.unique_with_counts(index)
    return _repeat(x, n, axis) 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:22,代碼來源:layer.py

示例4: get_distances

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def get_distances(features, labels, num_classes):
    len_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, len_features], dtype=tf.float32,
                              initializer=tf.constant_initializer(0), trainable=False)
    labels = tf.reshape(labels, [-1])
    centers_batch = tf.gather(centers, labels)

    # distances = features - centers_batch
    diff = centers_batch - features
    unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
    appear_times = tf.gather(unique_count, unique_idx)
    appear_times = tf.reshape(appear_times, [-1, 1])

    diff = tf.divide(diff, tf.cast((1 + appear_times), tf.float32))

    return diff 
開發者ID:kjanjua26,項目名稱:Git-Loss-For-Deep-Face-Recognition,代碼行數:18,代碼來源:gitloss.py

示例5: weighted_loss_ratio

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def weighted_loss_ratio(config, losses, labels, ratio_weight):
	unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
	appear_times = tf.gather(unique_count, unique_idx)
	# appear_times = tf.reshape(appear_times, [-1, 1])

	weighted_loss = losses * ratio_weight
	weighted_loss = weighted_loss / tf.cast((EPSILON+appear_times), tf.float32)

	return weighted_loss, None 
開發者ID:yyht,項目名稱:BERT,代碼行數:11,代碼來源:loss_utils.py

示例6: center_loss_v2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def center_loss_v2(config, features, labels, centers=None, **kargs):
	alpha = config.alpha
	num_classes = config.num_classes
	with tf.variable_scope(config.scope+"_center_loss"):
		print("==center loss==")
		len_features = features.get_shape()[1]
		if not centers:
			centers = tf.get_variable('centers', 
							[num_classes, len_features], 
							dtype=tf.float32,
							initializer=tf.contrib.layers.xavier_initializer(),
							trainable=False)
			print("==add center parameters==")
	 
		centers_batch = tf.gather(centers, labels)

		loss = tf.nn.l2_loss(features - centers_batch)
	 
		diff = centers_batch - features
	 
		unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
		appear_times = tf.gather(unique_count, unique_idx)
		appear_times = tf.reshape(appear_times, [-1, 1])
	 
		diff = diff / tf.cast((1 + appear_times), tf.float32)
		diff = alpha * diff

		centers_update_op = tf.scatter_sub(centers, labels, diff)

		tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, centers_update_op)
		
		return loss, centers 
開發者ID:yyht,項目名稱:BERT,代碼行數:34,代碼來源:loss_utils.py

示例7: get_top_elements

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def get_top_elements(list_of_elements, max_user_contribution):
  """Gets the top max_user_contribution words from the input list.

  Note that the returned set of top words will not necessarily be sorted.

  Args:
    list_of_elements: A tensor containing a list of elements.
    max_user_contribution: The maximum number of elements to keep.

  Returns:
    A tensor of a list of strings.
    If the total number of unique words is less than or equal to
    max_user_contribution, returns the set of unique words.
  """
  words, _, counts = tf.unique_with_counts(list_of_elements)
  if tf.size(words) > max_user_contribution:
    # This logic is influenced by the focus on global heavy hitters and
    # thus implements clipping by chopping the tail of the distribution
    # of the words as present on a single client. Another option could
    # be to provide pick max_words_per_user random words out of the unique
    # words present locally.
    top_indices = tf.argsort(
        counts, axis=-1, direction='DESCENDING')[:max_user_contribution]
    top_words = tf.gather(words, top_indices)
    return top_words
  return words 
開發者ID:tensorflow,項目名稱:federated,代碼行數:28,代碼來源:heavy_hitters_utils.py

示例8: testInt32

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def testInt32(self):
    x = np.random.randint(2, high=10, size=7000)
    with self.test_session() as sess:
      y, idx, count = tf.unique_with_counts(x)
      tf_y, tf_idx, tf_count = sess.run([y, idx, count])

    self.assertEqual(len(x), len(tf_idx))
    self.assertEqual(len(tf_y), len(np.unique(x)))
    for i in range(len(x)):
      self.assertEqual(x[i], tf_y[tf_idx[i]])
    for value, count in zip(tf_y, tf_count):
      self.assertEqual(count, np.sum(x == value)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:unique_op_test.py

示例9: testString

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def testString(self):
    indx = np.random.randint(65, high=122, size=7000)
    x = [chr(i) for i in indx]

    with self.test_session() as sess:
      y, idx, count = tf.unique_with_counts(x)
      tf_y, tf_idx, tf_count = sess.run([y, idx, count])

    self.assertEqual(len(x), len(tf_idx))
    self.assertEqual(len(tf_y), len(np.unique(x)))
    for i in range(len(x)):
      self.assertEqual(x[i], tf_y[tf_idx[i]].decode('ascii'))
    for value, count in zip(tf_y, tf_count):
      v = [1 if x[i] == value.decode('ascii') else 0 for i in range(7000)]
      self.assertEqual(count, sum(v)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:unique_op_test.py

示例10: reduce_batch_weighted_counts

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def reduce_batch_weighted_counts(x, weights=None):
  """Performs batch-wise reduction to produce (possibly weighted) counts.

  Args:
    x: Input `Tensor`.
    weights: (Optional) Weights input `Tensor`.

  Returns:
    a named tuple of...
      The unique values in x
      The sum of the weights for each unique value in x if weights are provided,
        else None
  """
  if isinstance(x, tf.SparseTensor):
    x = x.values
  if weights is None:
    # TODO(b/112916494): Always do batch wise reduction once possible.

    return ReducedBatchWeightedCounts(tf.reshape(x, [-1]), None, None, None)
  # TODO(b/134075780): Revisit expected weights shape when input is sparse.
  x, weights = assert_same_shape(x, weights)
  weights = tf.reshape(weights, [-1])
  x = tf.reshape(x, [-1])
  unique_x_values, unique_idx, _ = tf.unique_with_counts(x, out_idx=tf.int64)
  summed_weights_per_x = tf.math.unsorted_segment_sum(
      weights, unique_idx, tf.size(input=unique_x_values))
  return ReducedBatchWeightedCounts(unique_x_values, summed_weights_per_x, None,
                                    None) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:30,代碼來源:tf_utils.py

示例11: reduce_batch_count_or_sum_per_key

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def reduce_batch_count_or_sum_per_key(x, key, reduce_instance_dims):
  """Computes per-key sums or counts in the given tensor.

  Args:
    x: A `Tensor` or `SparseTensor`.  If x is None, return count per key.
    key: A `Tensor` or `SparseTensor` (cannot be None).
        Must meet one of the following conditions:
        1. Both x and key are dense,
        2. Both x and key are sparse and `key` must exactly match `x` in
        everything except values,
        3. The axis=1 index of each x matches its index of dense key.
    reduce_instance_dims: A bool, if True - collapses the batch and instance
        dimensions to arrive at a single scalar output. Otherwise, only
        collapses the batch dimension and outputs a `Tensor` of the same shape
        as the input. Not supported for `SparseTensor`s.

  Returns:
    A 2-tuple containing the `Tensor`s (key_vocab, count-or-sum).
  """
  if isinstance(x, tf.SparseTensor) and not reduce_instance_dims:
    raise NotImplementedError(
        'Sum per key only supports reduced dims for SparseTensors')

  key = _to_string(key)

  if x is not None:
    x, key = _validate_and_get_dense_value_key_inputs(x, key)
    unique = tf.unique(key, out_idx=tf.int64)
    if reduce_instance_dims and x.get_shape().ndims > 1:
      sums = tf.math.reduce_sum(x, axis=list(range(1, x.get_shape().ndims)))
    else:
      sums = x
    sums = tf.math.unsorted_segment_sum(sums, unique.idx, tf.size(unique.y))
  else:
    if isinstance(key, tf.SparseTensor):
      key = key.values
    key.set_shape([None])
    unique = tf.unique_with_counts(key, out_idx=tf.int64)
    sums = unique.count

  return unique.y, sums 
開發者ID:tensorflow,項目名稱:transform,代碼行數:43,代碼來源:tf_utils.py

示例12: get_center_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def get_center_loss(features, labels, alpha, num_classes):
    """
    Arguments:
        features: Tensor,shape [batch_size, feature_length].
        labels: Tensor,shape [batch_size].#not the one hot label
        alpha:  center upgrade learning rate
        num_classes: how many classes. 
    
    Return:
        loss: Tensor,
        centers: Tensor
        centers_update_op:
    """
    len_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, len_features], dtype=tf.float32,
        initializer=tf.constant_initializer(0), trainable=False)
    labels = tf.reshape(labels, [-1])
    centers_batch = tf.gather(centers, labels)
    loss = tf.nn.l2_loss(features - centers_batch)
    diff = centers_batch - features
    unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
    appear_times = tf.gather(unique_count, unique_idx)
    appear_times = tf.reshape(appear_times, [-1, 1])
    diff = diff / tf.cast((1 + appear_times), tf.float32)
    diff = alpha * diff
    centers_update_op = tf.scatter_sub(centers, labels, diff)
    # need to update after every epoch, the key is to update the center of the classes. 

    return loss, centers, centers_update_op 
開發者ID:xulabs,項目名稱:aitom,代碼行數:31,代碼來源:train_double.py

示例13: build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def build(self, predictions, targets, inputs=None):
        """ Prints the number of each kind of prediction """
        self.built = True
        pshape = predictions.get_shape()
        self.inner_metric.build(predictions, targets, inputs)

        with tf.name_scope(self.name):
            if len(pshape) == 1 or (len(pshape) == 2 and int(pshape[1]) == 1):
                self.name = self.name or "binary_prediction_counts"
                y, idx, count = tf.unique_with_counts(tf.argmax(predictions))
                self.tensor = tf.Print(self.inner_metric, [y, count], name=self.inner_metric.name)
            else:
                self.name = self.name or "categorical_prediction_counts"
                y, idx, count = tf.unique_with_counts(tf.argmax(predictions, dimension=1))
                self.tensor = tf.Print(self.inner_metric.tensor, [y, count], name=self.inner_metric.name) 
開發者ID:limbo018,項目名稱:FRU,代碼行數:17,代碼來源:metrics.py

示例14: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def call(self, inputs, mask=None):
        features, feature_graph_index = inputs
        feature_graph_index = tf.reshape(feature_graph_index, (-1,))
        _, _, count = tf.unique_with_counts(feature_graph_index)
        m = kb.dot(features, self.m_weight)
        if self.use_bias:
            m += self.m_bias

        self.h = tf.zeros(tf.stack(
            [tf.shape(input=features)[0], tf.shape(input=count)[0], self.n_hidden]))
        self.c = tf.zeros(tf.stack(
            [tf.shape(input=features)[0], tf.shape(input=count)[0], self.n_hidden]))
        q_star = tf.zeros(tf.stack(
            [tf.shape(input=features)[0], tf.shape(input=count)[0], 2 * self.n_hidden]))
        for i in range(self.T):
            self.h, c = self._lstm(q_star, self.c)
            e_i_t = tf.reduce_sum(
                input_tensor=m * repeat_with_index(self.h, feature_graph_index), axis=-1)
            exp = tf.exp(e_i_t)
            # print('exp shape ', exp.shape)
            seg_sum = tf.transpose(
                a=tf.math.segment_sum(
                    tf.transpose(a=exp, perm=[1, 0]),
                    feature_graph_index),
                perm=[1, 0])
            seg_sum = tf.expand_dims(seg_sum, axis=-1)
            # print('seg_sum shape', seg_sum.shape)
            interm = repeat_with_index(seg_sum, feature_graph_index)
            # print('interm shape', interm.shape)
            a_i_t = exp / interm[..., 0]
            # print(a_i_t.shape)
            r_t = tf.transpose(a=tf.math.segment_sum(
                tf.transpose(a=tf.multiply(m, a_i_t[:, :, None]), perm=[1, 0, 2]),
                feature_graph_index), perm=[1, 0, 2])
            q_star = kb.concatenate([self.h, r_t], axis=-1)
        return q_star 
開發者ID:materialsvirtuallab,項目名稱:megnet,代碼行數:38,代碼來源:set2set.py

示例15: center_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique_with_counts [as 別名]
def center_loss(features, labels, num_classes, alpha=0.5, updates_collections=tf.GraphKeys.UPDATE_OPS, scope=None):
    # modified from https://github.com/EncodeTS/TensorFlow_Center_Loss/blob/master/center_loss.py

    assert features.shape.ndims == 2, 'The rank of `features` should be 2!'
    assert 0 <= alpha <= 1, '`alpha` should be in [0, 1]!'

    with tf.variable_scope(scope, 'center_loss', [features, labels]):
        centers = tf.get_variable('centers', shape=[num_classes, features.get_shape()[-1]], dtype=tf.float32,
                                  initializer=tf.constant_initializer(0), trainable=False)

        centers_batch = tf.gather(centers, labels)
        diff = centers_batch - features
        _, unique_idx, unique_count = tf.unique_with_counts(labels)
        appear_times = tf.gather(unique_count, unique_idx)
        appear_times = tf.reshape(appear_times, [-1, 1])
        diff = diff / tf.cast((1 + appear_times), tf.float32)
        diff = alpha * diff
        update_centers = tf.scatter_sub(centers, labels, diff)

        center_loss = 0.5 * tf.reduce_mean(tf.reduce_sum((centers_batch - features)**2, axis=-1))

        if updates_collections is None:
            with tf.control_dependencies([update_centers]):
                center_loss = tf.identity(center_loss)
        else:
            tf.add_to_collections(updates_collections, update_centers)

    return center_loss, centers 
開發者ID:LynnHo,項目名稱:AttGAN-Tensorflow,代碼行數:30,代碼來源:losses.py


注:本文中的tensorflow.unique_with_counts方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。