本文整理匯總了Python中tensorflow.unique方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.unique方法的具體用法?Python tensorflow.unique怎麽用?Python tensorflow.unique使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.unique方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _deduplicate_indexed_slices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(
values, new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例2: create_mappings
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def create_mappings(X):
"""Create string-IDs mappings for entities and relations.
Entities and relations are assigned incremental, unique integer IDs.
Mappings are preserved in two distinct dictionaries,
and counters are separated for entities and relations mappings.
Parameters
----------
X : ndarray, shape [n, 3]
The triples to extract mappings.
Returns
-------
rel_to_idx : dict
The relation-to-internal-id associations.
ent_to_idx: dict
The entity-to-internal-id associations.
"""
logger.debug('Creating mappings for entities and relations.')
unique_ent = np.unique(np.concatenate((X[:, 0], X[:, 2])))
unique_rel = np.unique(X[:, 1])
return _create_unique_mappings(unique_ent, unique_rel)
示例3: get_neg_items_click
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def get_neg_items_click(self, valid_samples_session, num_neg_samples):
#Shuffles neg. samples for each click
valid_samples_shuffled = tf.random.shuffle(valid_samples_session)
samples_unique_vals, samples_unique_idx = tf.unique(valid_samples_shuffled)
#Returning first N unique items (to avoid repetition)
first_unique_items = tf.unsorted_segment_min(data=valid_samples_shuffled,
segment_ids=samples_unique_idx,
num_segments=tf.shape(samples_unique_vals)[0])[:num_neg_samples]
#Padding if necessary to keep the number of neg samples constant (ex: first batch)
first_unique_items_padded_if_needed = tf.concat([first_unique_items, tf.zeros(num_neg_samples-tf.shape(first_unique_items)[0], tf.int64)], axis=0)
return first_unique_items_padded_if_needed
示例4: lookup_key
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def lookup_key(key, key_vocab):
"""Look up the index of a key.
Args:
key: A `Tensor`.
key_vocab: A `Tensor` of unique keys that can be converted to a hash table.
Returns:
The indices of the keys in key, determined by position in key_vocab.
"""
initializer = tf.lookup.KeyValueTensorInitializer(
keys=key_vocab,
values=tf.cast(tf.range(tf.size(key_vocab)), tf.int64),
key_dtype=key_vocab.dtype,
value_dtype=tf.int64)
table = tf.lookup.StaticHashTable(initializer, default_value=-1)
return table.lookup(key)
示例5: find_dup
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def find_dup(a):
""" Find the duplicated elements in 1-D a tensor.
Args:
a: 1-D tensor.
Return:
more_than_one_vals: duplicated value in a.
indexes_in_a: duplicated value's index in a.
dups_in_a: duplicated value with duplicate in a.
"""
unique_a_vals, unique_idx = tf.unique(a)
count_a_unique = tf.unsorted_segment_sum(tf.ones_like(a),
unique_idx,
tf.shape(a)[0])
more_than_one = tf.greater(count_a_unique, 1)
more_than_one_idx = tf.squeeze(tf.where(more_than_one))
more_than_one_vals = tf.squeeze(tf.gather(unique_a_vals, more_than_one_idx))
not_duplicated, _ = tf.setdiff1d(a, more_than_one_vals)
dups_in_a, indexes_in_a = tf.setdiff1d(a, not_duplicated)
return more_than_one_vals, indexes_in_a, dups_in_a
示例6: get_pixel_value
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def get_pixel_value(img, x, y):
"""Cantor pairing for removing non-unique updates and indices. At the time of implementation, unfixed issue with scatter_nd causes problems with int32 update values. Till resolution, implemented on cpu """
with tf.device('/cpu:0'):
indices = tf.stack([y, x], 2)
indices = tf.reshape(indices, (375*1242, 2))
values = tf.reshape(img, [-1])
Y = indices[:,0]
X = indices[:,1]
Z = (X + Y)*(X + Y + 1)/2 + Y
filtered, idx = tf.unique(tf.squeeze(Z))
updated_values = tf.unsorted_segment_max(values, idx, tf.shape(filtered)[0])
# updated_indices = tf.map_fn(fn=lambda i: reverse(i), elems=filtered, dtype=tf.float32)
updated_indices = reverse_all(filtered)
updated_indices = tf.cast(updated_indices, 'int32')
resolved_map = tf.scatter_nd(updated_indices, updated_values, img.shape)
return resolved_map
示例7: _deduplicate_indexed_slices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(values,
new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例8: prepare_prototype_labels
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def prepare_prototype_labels(semantic_labels, instance_labels, offset=256):
"""Prepares prototype labels from semantic and instance labels.
This function generates unique prototype labels from semantic and instance
labels. Note that instance labels sometimes can be cluster labels.
Args:
semantic_labels: A 1-D integer tensor for semantic labels.
instance_labels: A 1-D integer tensor for instance labels.
offset: An integer for instance offset.
Returns:
unique_instance_labels: A 1-D integer tensor for unique instance labels with
the same length as the input semantic labels.
prototype_labels: A 1-D integer tensor for the semantic labels of
prototypes with length as the number of unique instances.
"""
instance_labels = tf.cast(instance_labels, tf.int64)
semantic_labels = tf.cast(semantic_labels, tf.int64)
prototype_labels, unique_instance_labels = tf.unique(
tf.reshape(semantic_labels + instance_labels * offset, [-1]))
unique_instance_labels = tf.cast(unique_instance_labels, tf.int32)
prototype_labels = tf.cast(prototype_labels % offset, tf.int32)
return unique_instance_labels, prototype_labels
示例9: _deduplicate_indexed_slices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def _deduplicate_indexed_slices(values, indices):
"""Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
"""
unique_indices, new_index_positions = tf.unique(indices)
summed_values = tf.unsorted_segment_sum(
values, new_index_positions,
tf.shape(unique_indices)[0])
return (summed_values, unique_indices)
示例10: predict
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def predict(self, answer, start_logits, end_logits, mask) -> Prediction:
masked_start_logits = exp_mask(start_logits, mask)
masked_end_logits = exp_mask(end_logits, mask)
if len(answer) == 3:
group_ids = answer[2]
# Turn the ids into segment ids using tf.unique
_, group_segments = tf.unique(group_ids, out_idx=tf.int32)
losses = []
for answer_mask, logits in zip(answer, [masked_start_logits, masked_end_logits]):
group_norms = segment_logsumexp(logits, group_segments)
if self.aggregate == "sum":
log_score = segment_logsumexp(logits + VERY_NEGATIVE_NUMBER * (1 - tf.cast(answer_mask, tf.float32)),
group_segments)
else:
raise ValueError()
losses.append(tf.reduce_mean(-(log_score - group_norms)))
loss = tf.add_n(losses)
else:
raise NotImplemented()
tf.add_to_collection(tf.GraphKeys.LOSSES, loss)
return BoundaryPrediction(tf.nn.softmax(masked_start_logits),
tf.nn.softmax(masked_end_logits),
masked_start_logits, masked_end_logits, mask)
示例11: extract_fixed_feature_ids
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def extract_fixed_feature_ids(comp, state, stride):
"""Extracts fixed feature IDs.
Args:
comp: Component whose fixed feature IDs we wish to extract.
state: Live MasterState object for the component.
stride: Tensor containing current batch * beam size.
Returns:
state handle: Updated state handle to be used after this call.
ids: List of [stride * num_steps, 1] feature IDs per channel. Missing IDs
(e.g., due to batch padding) are set to -1.
"""
num_channels = len(comp.spec.fixed_feature)
if not num_channels:
return state.handle, []
for feature_spec in comp.spec.fixed_feature:
check.Eq(feature_spec.size, 1, 'All features must have size=1')
check.Lt(feature_spec.embedding_dim, 0, 'All features must be non-embedded')
state.handle, indices, ids, _, num_steps = dragnn_ops.bulk_fixed_features(
state.handle, component=comp.name, num_channels=num_channels)
size = stride * num_steps
fixed_ids = []
for channel, feature_spec in enumerate(comp.spec.fixed_feature):
tf.logging.info('[%s] Adding fixed feature IDs "%s"', comp.name,
feature_spec.name)
# The +1 and -1 increments ensure that missing IDs default to -1.
#
# TODO(googleuser): This formula breaks if multiple IDs are extracted at some
# step. Try using tf.unique() to enforce the unique-IDS precondition.
sums = tf.unsorted_segment_sum(ids[channel] + 1, indices[channel], size) - 1
sums = tf.expand_dims(sums, axis=1)
fixed_ids.append(network_units.NamedTensor(sums, feature_spec.name, dim=1))
return state.handle, fixed_ids
示例12: get_atoms_in_nbrs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def get_atoms_in_nbrs(self, coords, cells):
"""Get the atoms in neighboring cells for each cells.
Returns
-------
atoms_in_nbrs = (N_atoms, n_nbr_cells, M_nbrs)
"""
# Shape (N_atoms, 1)
cells_for_atoms = self.get_cells_for_atoms(coords, cells)
# Find M_nbrs atoms closest to each cell
# Shape (n_cells, M_nbrs)
closest_atoms = self.get_closest_atoms(coords, cells)
# Associate each cell with its neighbor cells. Assumes periodic boundary
# conditions, so does wrapround. O(constant)
# Shape (n_cells, n_nbr_cells)
neighbor_cells = self.get_neighbor_cells(cells)
# Shape (N_atoms, n_nbr_cells)
neighbor_cells = tf.squeeze(tf.gather(neighbor_cells, cells_for_atoms))
# Shape (N_atoms, n_nbr_cells, M_nbrs)
atoms_in_nbrs = tf.gather(closest_atoms, neighbor_cells)
# Shape (N_atoms, n_nbr_cells*M_nbrs)
atoms_in_nbrs = tf.reshape(atoms_in_nbrs, [self.N_atoms, -1])
# List of length N_atoms, each element length uniques_i
nbrs_per_atom = tf.split(atoms_in_nbrs, self.N_atoms)
uniques = [
tf.unique(tf.squeeze(atom_nbrs))[0] for atom_nbrs in nbrs_per_atom
]
# TODO(rbharath): FRAGILE! Uses fact that identity seems to be the first
# element removed to remove self from list of neighbors. Need to verify
# this holds more broadly or come up with robust alternative.
uniques = [unique[1:] for unique in uniques]
return uniques
示例13: basis_message_func
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def basis_message_func(self, edges):
"""Message function for basis regularizer"""
if self.num_bases < self.num_rels:
# generate all weights from bases
weight = tf.reshape(self.weight, (self.num_bases,
self.in_feat * self.out_feat))
weight = tf.reshape(tf.matmul(self.w_comp, weight), (
self.num_rels, self.in_feat, self.out_feat))
else:
weight = self.weight
# calculate msg @ W_r before put msg into edge
# if src is th.int64 we expect it is an index select
if edges.src['h'].dtype != tf.int64 and self.low_mem:
etypes, _ = tf.unique(edges.data['type'])
msg = tf.zeros([edges.src['h'].shape[0], self.out_feat])
idx = tf.range(edges.src['h'].shape[0])
for etype in etypes:
loc = (edges.data['type'] == etype)
w = weight[etype]
src = tf.boolean_mask(edges.src['h'], loc)
sub_msg = tf.matmul(src, w)
indices = tf.reshape(tf.boolean_mask(idx, loc), (-1, 1))
msg = tf.tensor_scatter_nd_update(msg, indices, sub_msg)
else:
msg = utils.bmm_maybe_select(
edges.src['h'], weight, edges.data['type'])
if 'norm' in edges.data:
msg = msg * edges.data['norm']
return {'msg': msg}
示例14: bdd_message_func
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def bdd_message_func(self, edges):
"""Message function for block-diagonal-decomposition regularizer"""
if ((edges.src['h'].dtype == tf.int64) and
len(edges.src['h'].shape) == 1):
raise TypeError(
'Block decomposition does not allow integer ID feature.')
# calculate msg @ W_r before put msg into edge
# if src is th.int64 we expect it is an index select
if self.low_mem:
etypes, _ = tf.unique(edges.data['type'])
msg = tf.zeros([edges.src['h'].shape[0], self.out_feat])
idx = tf.range(edges.src['h'].shape[0])
for etype in etypes:
loc = (edges.data['type'] == etype)
w = tf.reshape(self.weight[etype],
(self.num_bases, self.submat_in, self.submat_out))
src = tf.reshape(tf.boolean_mask(edges.src['h'], loc),
(-1, self.num_bases, self.submat_in))
sub_msg = tf.einsum('abc,bcd->abd', src, w)
sub_msg = tf.reshape(sub_msg, (-1, self.out_feat))
indices = tf.reshape(tf.boolean_mask(idx, loc), (-1, 1))
msg = tf.tensor_scatter_nd_update(msg, indices, sub_msg)
else:
weight = tf.reshape(tf.gather(
self.weight, edges.data['type']), (-1, self.submat_in, self.submat_out))
node = tf.reshape(edges.src['h'], (-1, 1, self.submat_in))
msg = tf.reshape(tf.matmul(node, weight), (-1, self.out_feat))
if 'norm' in edges.data:
msg = msg * edges.data['norm']
return {'msg': msg}
示例15: unique
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import unique [as 別名]
def unique(input):
return tf.unique(input).y