當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.uint16方法代碼示例

本文整理匯總了Python中tensorflow.uint16方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.uint16方法的具體用法?Python tensorflow.uint16怎麽用?Python tensorflow.uint16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.uint16方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test16bit

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def test16bit(self):
    img_bytes = [[0, 255], [1024, 1024 + 255]]
    # Encoded PNG bytes resulting from encoding the above img_bytes
    # using go's image/png encoder.
    encoded_bytes = [137, 80, 78, 71, 13, 10, 26, 10, 0, 0, 0, 13, 73, 72, 68,
                     82, 0, 0, 0, 2, 0, 0, 0, 2, 16, 0, 0, 0, 0, 7, 77, 142,
                     187, 0, 0, 0, 21, 73, 68, 65, 84, 120, 156, 98, 98, 96, 96,
                     248, 207, 194, 2, 36, 1, 1, 0, 0, 255, 255, 6, 60, 1, 10,
                     68, 160, 26, 131, 0, 0, 0, 0, 73, 69, 78, 68, 174, 66, 96,
                     130]

    byte_string = bytes(bytearray(encoded_bytes))
    img_in = tf.constant(byte_string, dtype=tf.string)
    decode = tf.squeeze(tf.image.decode_png(img_in, dtype=tf.uint16))

    with self.test_session():
      decoded = decode.eval()
      self.assertAllEqual(decoded, img_bytes) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:decode_png_op_test.py

示例2: testIntTypes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def testIntTypes(self):
    for dtype, nptype in [
        (tf.int32, np.int32),
        (tf.uint8, np.uint8),
        (tf.uint16, np.uint16),
        (tf.int16, np.int16),
        (tf.int8, np.int8)]:
      # Test with array.
      t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype)
      self.assertEquals(dtype, t.dtype)
      self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
      a = tensor_util.MakeNdarray(t)
      self.assertEquals(nptype, a.dtype)
      self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a)
      # Test with ndarray.
      t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype))
      self.assertEquals(dtype, t.dtype)
      self.assertProtoEquals("dim { size: 3 }", t.tensor_shape)
      a = tensor_util.MakeNdarray(t)
      self.assertEquals(nptype, a.dtype)
      self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:tensor_util_test.py

示例3: setUp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def setUp(self):
    super(TPUEncodeTest, self).setUp()
    self.data = (
        # Supported on TPU
        tf.random.uniform([128], maxval=100000, dtype=tf.int32),
        # Not supported on TPU
        tf.cast(
            tf.random.uniform([128], maxval=65535, dtype=tf.int32), tf.uint16),
        # Not supported on TPU
        tf.cast(
            tf.random.uniform([64, 84, 84, 4], maxval=256, dtype=tf.int32),
            tf.uint8),
        # Not supported on TPU
        tf.cast(tf.random.uniform([1], maxval=256, dtype=tf.int32), tf.uint8),
        # Not supported on TPU
        tf.cast(
            tf.random.uniform([100, 128, 1, 1, 1], maxval=256, dtype=tf.int32),
            tf.uint8),
        # Not supported on TPU
        tf.cast(
            tf.random.uniform([128, 100, 1, 1, 1], maxval=256, dtype=tf.int32),
            tf.uint8),
    ) 
開發者ID:google-research,項目名稱:seed_rl,代碼行數:25,代碼來源:utils_test.py

示例4: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def __init__(self, gray, isInstance=False):
    self._sess = tf.Session()
    self.isGrayscale = gray
    self._png_data = tf.placeholder(dtype=tf.string)
    if isInstance:
      self._isInstance = True
      self._image = tf.placeholder(dtype=tf.uint8)
      self._decode_png = tf.image.decode_png(self._png_data, channels=0, dtype=tf.uint16)
      self._decode_png = tf.image.resize_images(tf.cast(self._decode_png, tf.float32), size=[256, 512])
      self._encode_png = tf.image.encode_png(self._image)
    elif self.isGrayscale:
      self._image = tf.placeholder(dtype=tf.uint8)
      self._decode_png = tf.image.decode_png(self._png_data, channels=0)
      self._decode_png = tf.image.resize_images(self._decode_png, size=[256, 512])
      self._encode_png = tf.image.encode_png(self._image)
    else:
      self._image = tf.placeholder(dtype=tf.uint8)
      self._decode_png = tf.image.decode_png(self._png_data, channels=3)
      self._decode_png = tf.image.resize_images(self._decode_png, size=[256, 512])
      self._encode_png = tf.image.encode_png(self._image) 
開發者ID:ranandalon,項目名稱:mtl,代碼行數:22,代碼來源:tfrecorder.py

示例5: load_tensorflow_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def load_tensorflow_image(self, channel_label: str,
                            image_name: str) -> lt.LabeledTensor:
    # All images will be cropped to this size.
    crop_size = 1024

    filename_op = tf.train.string_input_producer([self.data_path(image_name)])
    wfr = tf.WholeFileReader()
    _, encoded_png_op = wfr.read(filename_op)
    image_op = tf.image.decode_png(
        tf.reshape(encoded_png_op, shape=[]), channels=1, dtype=tf.uint16)
    image_op = image_op[:crop_size, :crop_size, :]
    image_op = tf.to_float(image_op) / np.iinfo(np.uint16).max
    image_op = tf.reshape(image_op, [1, 1024, 1024, 1])

    return lt.LabeledTensor(
        image_op, ['batch', 'row', 'column', ('channel', [channel_label])]) 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:18,代碼來源:test_util.py

示例6: test__dtype_to_bytes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def test__dtype_to_bytes():
    np_tf_dt = [
        (np.uint8, tf.uint8, b"uint8"),
        (np.uint16, tf.uint16, b"uint16"),
        (np.uint32, tf.uint32, b"uint32"),
        (np.uint64, tf.uint64, b"uint64"),
        (np.int8, tf.int8, b"int8"),
        (np.int16, tf.int16, b"int16"),
        (np.int32, tf.int32, b"int32"),
        (np.int64, tf.int64, b"int64"),
        (np.float16, tf.float16, b"float16"),
        (np.float32, tf.float32, b"float32"),
        (np.float64, tf.float64, b"float64"),
    ]

    for npd, tfd, dt in np_tf_dt:
        npd = np.dtype(npd)
        assert tfrecord._dtype_to_bytes(npd) == dt
        assert tfrecord._dtype_to_bytes(tfd) == dt

    assert tfrecord._dtype_to_bytes("float32") == b"float32"
    assert tfrecord._dtype_to_bytes("foobar") == b"foobar" 
開發者ID:neuronets,項目名稱:nobrainer,代碼行數:24,代碼來源:tfrecord_test.py

示例7: _convert_string_dtype

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def _convert_string_dtype(dtype):
    if dtype == 'float16':
        return tf.float16
    if dtype == 'float32':
        return tf.float32
    elif dtype == 'float64':
        return tf.float64
    elif dtype == 'int16':
        return tf.int16
    elif dtype == 'int32':
        return tf.int32
    elif dtype == 'int64':
        return tf.int64
    elif dtype == 'uint8':
        return tf.int8
    elif dtype == 'uint16':
        return tf.uint16
    else:
        raise ValueError('Unsupported dtype:', dtype) 
開發者ID:GUR9000,項目名稱:KerasNeuralFingerprint,代碼行數:21,代碼來源:tensorflow_backend.py

示例8: reduce_mean_support_empty

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def reduce_mean_support_empty(input, keepdims=False):
    return tf.cond(tf.size(input) > 0, lambda: tf.reduce_mean(input, keepdims=keepdims), lambda: tf.zeros_like(input))


# def bit_tensor_list(input):
#     assert input.dtype in [tf.uint8, tf.uint16, tf.uint32, tf.uint64], 'unsupported data type, must be uint*'
#     num_bits = 0
#     if input.dtype == tf.int8:
#         num_bits = 8
#     elif input.dtype == tf.int16:
#         num_bits = 16
#     elif input.dtype == tf.uint32:
#         num_bits = 32
#     elif input.dtype == tf.uint64:
#         num_bits = 64
#     bit_tensors = []
#     for i in range(num_bits):
#         current_bit = 1 << i
#         current_bit_tensor = tf.bitwise.bitwise_and(input, current_bit) == 1
#         bit_tensors.append(current_bit_tensor)
#     print(bit_tensors)
#     return bit_tensors 
開發者ID:christianpayer,項目名稱:MedicalDataAugmentationTool,代碼行數:24,代碼來源:tensorflow_util.py

示例9: read_and_decode_distillation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def read_and_decode_distillation(self, filename_queue):
        img1_name = tf.string_join([self.img_dir, '/', filename_queue[0]])
        img2_name = tf.string_join([self.img_dir, '/', filename_queue[1]])     
        img1 = tf.image.decode_png(tf.read_file(img1_name), channels=3)
        img1 = tf.cast(img1, tf.float32)
        img2 = tf.image.decode_png(tf.read_file(img2_name), channels=3)
        img2 = tf.cast(img2, tf.float32)    
        
        flow_occ_fw_name = tf.string_join([self.fake_flow_occ_dir, '/flow_occ_fw_', filename_queue[2], '.png'])
        flow_occ_bw_name = tf.string_join([self.fake_flow_occ_dir, '/flow_occ_bw_', filename_queue[2], '.png'])
        flow_occ_fw = tf.image.decode_png(tf.read_file(flow_occ_fw_name), dtype=tf.uint16, channels=3)
        flow_occ_fw = tf.cast(flow_occ_fw, tf.float32)   
        flow_occ_bw = tf.image.decode_png(tf.read_file(flow_occ_bw_name), dtype=tf.uint16, channels=3)
        flow_occ_bw = tf.cast(flow_occ_bw, tf.float32)             
        flow_fw, occ_fw = self.extract_flow_and_mask(flow_occ_fw)
        flow_bw, occ_bw = self.extract_flow_and_mask(flow_occ_bw)
        return img1, img2, flow_fw, flow_bw, occ_fw, occ_bw 
開發者ID:ppliuboy,項目名稱:DDFlow,代碼行數:19,代碼來源:datasets.py

示例10: _load_sample

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def _load_sample(self, files):
        left_file_name = files[0]
        right_file_name = files[1]
        gt_file_name = files[2]

        #read rgb images
        left_image = read_image_from_disc(left_file_name)
        right_image = read_image_from_disc(right_file_name)

        #read gt 
        if self._usePfm:
            gt_image = tf.py_func(lambda x: readPFM(x)[0], [gt_file_name], tf.float32)
            gt_image.set_shape([None,None,1])
        else:
            read_type = tf.uint16 if self._double_prec_gt else tf.uint8
            gt_image = read_image_from_disc(gt_file_name,shape=[None,None,1], dtype=read_type)
            gt_image = tf.cast(gt_image,tf.float32)
            if self._double_prec_gt:
                gt_image = gt_image/256.0
        
        #crop gt to fit with image (SGM adds some paddings who know why...)
        gt_image = gt_image[:,:tf.shape(left_image)[1],:]

        if self._resize_shape[0] is not None:
            scale_factor = tf.cast(tf.shape(gt_image_left)[1],tf.float32)/float(self._resize_shape[1])
            left_image = preprocessing.rescale_image(left_image,self._resize_shape)
            right_image = preprocessing.rescale_image(right_image, self._resize_shape)
            gt_image = tf.image.resize_nearest_neighbor(tf.expand_dims(gt_image,axis=0), self._resize_shape)[0]/scale_factor
        
        if self._crop_shape[0] is not None:
            if self._is_training:
                left_image,right_image,gt_image = preprocessing.random_crop(self._crop_shape, [left_image,right_image,gt_image])
            else:
                (left_image,right_image,gt_image) = [tf.image.resize_image_with_crop_or_pad(x,self._crop_shape[0],self._crop_shape[1]) for x in [left_image,right_image,gt_image]]
        
        if self._augment:
            left_image,right_image=preprocessing.augment(left_image,right_image)

        return [left_image,right_image,gt_image] 
開發者ID:CVLAB-Unibo,項目名稱:Learning2AdaptForStereo,代碼行數:41,代碼來源:data_reader.py

示例11: _build_input_pipeline

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def _build_input_pipeline(self):
        left_files, right_files, gt_files, _ = read_list_file(self._path_file)
        self._couples = [[l, r, gt] for l, r, gt in zip(left_files, right_files, gt_files)]
        #flags 
        self._usePfm = gt_files[0].endswith('pfm') or gt_files[0].endswith('PFM')
        if not self._usePfm:
            gg = cv2.imread(gt_files[0],-1)
            self._double_prec_gt = (gg.dtype == np.uint16)
        
        print('Input file loaded, starting to build input pipelines')
        print('FLAGS:')
        print('_usePfmGt',self._usePfm)
        print('_double_prec_gt', self._double_prec_gt)

        #create dataset
        dataset = tf.data.Dataset.from_tensor_slices(self._couples).repeat(self._num_epochs)
        if self._shuffle:
            dataset = dataset.shuffle(self._batch_size*50)
        
        #load images
        dataset = dataset.map(self._load_sample)

        #transform data
        dataset = dataset.batch(self._batch_size, drop_remainder=True)
        dataset = dataset.prefetch(buffer_size=30)

        #get iterator and batches
        iterator = dataset.make_one_shot_iterator()
        images = iterator.get_next()
        self._left_batch = images[0]
        self._right_batch = images[1]
        self._gt_batch = images[2]

    ################# PUBLIC METHOD ####################### 
開發者ID:CVLAB-Unibo,項目名稱:Learning2AdaptForStereo,代碼行數:36,代碼來源:data_reader.py

示例12: _decode_gt

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def _decode_gt(self, gt):
        if self._usePfm:
            gt_image_op = tf.py_func(lambda x: read_PFM(x)[0], [gt], tf.float32)
            gt_image_op.set_shape([None,None,1])
        else:
            read_type = tf.uint16 if self._double_prec_gt else tf.uint8
            gt_image_op = read_image_from_disc(gt,shape=[None,None,1], dtype=read_type)
            gt_image_op = tf.cast(gt_image_op,tf.float32)
            if self._double_prec_gt:
                gt_image_op = gt_image_op/256.0
        return gt_image_op 
開發者ID:CVLAB-Unibo,項目名稱:Learning2AdaptForStereo,代碼行數:13,代碼來源:data_reader.py

示例13: args_check

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def args_check(cls, node, **kwargs):
    supported_dtype = [
        tf.bfloat16, tf.half, tf.float32, tf.float64, tf.uint8, tf.uint16,
        tf.int8, tf.int16, tf.int32, tf.int64, tf.complex64, tf.complex128
    ]
    x = kwargs["tensor_dict"][node.inputs[0]]
    if x.dtype not in supported_dtype:
      exception.OP_UNSUPPORTED_EXCEPT(
          "CumSum input in " + str(x.dtype) + " which", "Tensorflow") 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:11,代碼來源:cumsum.py

示例14: args_check

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def args_check(cls, node, **kwargs):
    unsupported_dtype = [
        tf.int8, tf.int16, tf.uint8, tf.uint16, tf.uint32, tf.uint64
    ]
    x = kwargs["tensor_dict"][node.inputs[0]]
    y = kwargs["tensor_dict"][node.inputs[1]]
    if x.dtype in unsupported_dtype:
      exception.OP_UNSUPPORTED_EXCEPT("Mod Dividend in " + str(x.dtype),
                                      "Tensorflow")
    if y.dtype in unsupported_dtype:
      exception.OP_UNSUPPORTED_EXCEPT("Mod Divisor in " + str(y.dtype),
                                      "Tensorflow") 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:14,代碼來源:mod.py

示例15: _common

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import uint16 [as 別名]
def _common(cls, node, **kwargs):
    tensor_dict = kwargs["tensor_dict"]
    x = tensor_dict[node.inputs[0]]
    x_dtype = x.dtype

    if cls.SINCE_VERSION < 11:
      # min/max were required and passed as attributes
      clip_value_min = node.attrs.get("min", tf.reduce_min(x))
      clip_value_max = node.attrs.get("max", tf.reduce_max(x))
    else:
      # min/max are optional and passed as inputs
      clip_value_min = tensor_dict[node.inputs[1]] if len(
          node.inputs) > 1 and node.inputs[1] != "" else x_dtype.min
      clip_value_max = tensor_dict[node.inputs[2]] if len(
          node.inputs) > 2 and node.inputs[2] != "" else x_dtype.max

    # tf.clip_by_value doesn't support uint8, uint16, uint32, int8 and int16
    # dtype for x, therefore need to upcast it to tf.int32 or tf.int64
    if x_dtype in [tf.uint8, tf.uint16, tf.uint32, tf.int8, tf.int16]:
      cast_to = tf.int64 if x_dtype == tf.uint32 else tf.int32
      x = tf.cast(x, cast_to)
      clip_value_min = tf.cast(clip_value_min, cast_to)
      clip_value_max = tf.cast(clip_value_max, cast_to)
      y = tf.clip_by_value(x, clip_value_min, clip_value_max)
      y = tf.cast(y, x_dtype)
    else:
      y = tf.clip_by_value(x, clip_value_min, clip_value_max)

    return [y] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:31,代碼來源:clip.py


注:本文中的tensorflow.uint16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。