當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.tuple方法代碼示例

本文整理匯總了Python中tensorflow.tuple方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.tuple方法的具體用法?Python tensorflow.tuple怎麽用?Python tensorflow.tuple使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.tuple方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testWhile_NestedInput

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def testWhile_NestedInput(self):
    with self.test_session() as sess:
      named = collections.namedtuple("named", ("a", "b"))
      loop_vars = [named(a=tf.constant(0.0), b=tf.constant(1.0)),
                   (tf.constant(2.0), tf.constant(3.0)),
                   tf.constant(4.0)]
      c = lambda lv0, _1, _2: lv0.a < 100.0
      def b(lv0, lv1, lv2):
        lv0 = named(a=lv0.a + 1, b=lv0.b)
        lv1 = (lv1[0] + 1, lv1[1])
        lv2 += 2
        return [lv0, lv1, lv2]
      r = tf.while_loop(c, b, loop_vars)

      self.assertTrue(isinstance(r, list))
      self.assertTrue(isinstance(r[0], named))
      self.assertTrue(isinstance(r[1], tuple))
      self.assertTrue(isinstance(r[2], tf.Tensor))

      r_flattened = nest.flatten(r)
      self.assertEqual(
          [100.0, 1.0, 102.0, 3.0, 4.0 + 100*2.0],
          sess.run(r_flattened)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:control_flow_ops_py_test.py

示例2: _get_state_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _get_state_variables(self, batch_size, cell):
        """For each layer, get the initial state and make a variable out of it
        to enable updating its value.

        Args:
            batch_size (int): Batch size.
            cell (tf.BasicLSTMCell): LSTM cell to get the initial state for.

        Returns:
            tupel: Tupel of the state variables and there zero states.

        """
        # For each layer, get the initial state and make a variable out of it
        # to enable updating its value.
        zero_state = cell.zero_state(batch_size, tf.float32)
        state_variables = []
        for state_c, state_h in zero_state:
            state_variables.append(
                tf.contrib.rnn.LSTMStateTuple(
                    tf.Variable(state_c, trainable=False),
                    tf.Variable(state_h, trainable=False)))
        # Return as a tuple, so that it can be fed to dynamic_rnn as an initial state
        return tuple(state_variables), zero_state 
開發者ID:fsschneider,項目名稱:DeepOBS,代碼行數:25,代碼來源:tolstoi_char_rnn.py

示例3: _get_state_update_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _get_state_update_op(self, state_variables, new_states):
        """Add an operation to update the train states with the last state tensors

        Args:
            state_variables (tf.Variable): State variables to be updated
            new_states (tf.Variable): New state of the state variable.

        Returns:
            tf.Operation: Return a tuple in order to combine all update_ops into a
            single operation. The tuple's actual value should not be used.

        """
        # Add an operation to update the train states with the last state tensors
        update_ops = []
        for state_variable, new_state in zip(state_variables, new_states):
            # Assign the new state to the state variables on this layer
            update_ops.extend([
                state_variable[0].assign(new_state[0]),
                state_variable[1].assign(new_state[1])
            ])
        # Return a tuple in order to combine all update_ops into a single operation.
        # The tuple's actual value should not be used.
        return tf.tuple(update_ops) 
開發者ID:fsschneider,項目名稱:DeepOBS,代碼行數:25,代碼來源:tolstoi_char_rnn.py

示例4: expand_bboxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def expand_bboxes(xmin, xmax, ymin, ymax, cfg):
    """
    Expand the bboxes.
    """

    w = xmax - xmin
    h = ymax - ymin

    w = w * cfg.WIDTH_EXPANSION_FACTOR
    h = h * cfg.HEIGHT_EXPANSION_FACTOR

    half_w = w / 2.
    half_h = h / 2.

    xmin = tf.clip_by_value(xmin - half_w, 0, 1)
    xmax = tf.clip_by_value(xmax + half_w, 0, 1)
    ymin = tf.clip_by_value(ymin - half_h, 0, 1)
    ymax = tf.clip_by_value(ymax + half_h, 0, 1)

    return tf.tuple([xmin, xmax, ymin, ymax]) 
開發者ID:visipedia,項目名稱:tf_classification,代碼行數:22,代碼來源:inputs.py

示例5: _precision_recall

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _precision_recall(n_gbboxes, n_detections, scores, tp, fp, scope=None):
    """Compute precision and recall from scores, true positives and false
    positives booleans arrays
    """
    # Sort by score.
    with tf.name_scope(scope, 'prec_rec', [n_gbboxes, scores, tp, fp]):
        # Sort detections by score.
        scores, idxes = tf.nn.top_k(scores, k=n_detections, sorted=True)
        tp = tf.gather(tp, idxes)
        fp = tf.gather(fp, idxes)
        # Computer recall and precision.
        dtype = tf.float64
        tp = tf.cumsum(tf.cast(tp, dtype), axis=0)
        fp = tf.cumsum(tf.cast(fp, dtype), axis=0)
        recall = _safe_div(tp, tf.cast(n_gbboxes, dtype), 'recall')
        precision = _safe_div(tp, tp + fp, 'precision')

        return tf.tuple([precision, recall]) 
開發者ID:LevinJ,項目名稱:SSD_tensorflow_VOC,代碼行數:20,代碼來源:metrics.py

示例6: _rev_layer_forward

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _rev_layer_forward(xs, f, g, f_side_input, g_side_input,
                       gate_outputs=False):
  """Forward for 1 reversible layer."""
  x1, x2 = xs
  y1 = x1 + (f(x2, f_side_input) if f_side_input else f(x2))
  y2 = x2 + (g(y1, g_side_input) if g_side_input else g(y1))
  out = (y1, y2)
  if gate_outputs:
    out = tf.tuple(out)
  return out 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:12,代碼來源:rev_block.py

示例7: precision_recall

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def precision_recall(num_gbboxes, tp, fp, scope=None):
    """Compute precision and recall from true positives and false
    positives booleans arrays
    """

    # Sort by score.
    with tf.name_scope(scope, 'precision_recall'):
        # Computer recall and precision.
        tp = tf.reduce_sum(tf.cast(tp, tf.float32), axis=0)
        fp = tf.reduce_sum(tf.cast(fp, tf.float32), axis=0)
        recall = tfe_math.safe_divide(tp, tf.cast(num_gbboxes, tf.float32), 'recall')
        precision = tfe_math.safe_divide(tp, tp + fp, 'precision')
        return tf.tuple([precision, recall]) 
開發者ID:dengdan,項目名稱:seglink,代碼行數:15,代碼來源:metrics.py

示例8: configure_gcs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def configure_gcs(credentials=None, block_cache=None, device=None):
  """Configures the GCS file system for a given a session.

  Warning: GCS `credentials` may be transmitted over the network unencrypted.
  Please ensure that the network is trusted before using this function. For
  users running code entirely within Google Cloud, your data is protected by
  encryption in between data centers. For more information, please take a look
  at https://cloud.google.com/security/encryption-in-transit/.

  Args:
    credentials: [Optional.] A JSON string
    block_cache: [Optional.] A BlockCacheParams to configure the block cache .
    device: [Optional.] The device to place the configure ops.
  """
  def configure(credentials, block_cache):
    """Helper function to actually configure GCS."""
    if credentials:
      if isinstance(credentials, dict):
        credentials = json.dumps(credentials)
      creds = gcs_configure_credentials(credentials)
    else:
      creds = tf.constant(0)

    if block_cache:
      cache = gcs_configure_block_cache(
          max_cache_size=block_cache.max_bytes,
          block_size=block_cache.block_size,
          max_staleness=block_cache.max_staleness)
    else:
      cache = tf.constant(0)

    return tf.tuple([creds, cache])

  if device:
    with ops.device(device):
      return configure(credentials, block_cache)
  return configure(credentials, block_cache) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:39,代碼來源:__init__.py

示例9: minimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def minimize(self, loss, variables=None):
    """"""
    
    variables = variables or tf.trainable_variables()
    gradients = tf.gradients(loss, variables,
                             colocate_gradients_with_ops=True,
                             gate_gradients=True,
                             aggregation_method=2)
    gradients = {variable: gradient for variable, gradient in zip(variables, gradients) if gradient is not None}
    
    variable_steps = {}
    variable_indices = {}
    updates = [tf.assign_add(self.global_step, 1)]
    for variable, gradient in six.iteritems(gradients):
      if isinstance(gradient, tf.Tensor):
        step, update = self.dense_update(gradient, variable)
        variable_steps[variable] = step
        updates.extend(update)
      else:
        step, indices, update = self.sparse_update(gradient, variable)
        variable_steps[variable] = step
        variable_indices[variable] = indices
        updates.extend(update)
    
    variable_steps = self.clip_by_global_norm(variable_steps)
    
    for variable, step in six.iteritems(variable_steps):
      if variable in variable_indices:
        indices = variable_indices[variable]
        updates.append(tf.scatter_sub(variable, indices, step))
      else:
        updates.append(tf.assign_sub(variable, step))
    
    return tf.tuple(updates)[0]
  
  #============================================================= 
開發者ID:tdozat,項目名稱:Parser-v3,代碼行數:38,代碼來源:optimizer.py

示例10: average_precision

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def average_precision(
        num_gt_boxes,
        tp,
        fp,
        score,
        class_name,
        metrics_collections=None,
        updates_collections=None,
):
    """Compute average precision.

    Args:
        num_gt_boxes(tf.Tensor): a scalar tensor. number of gt boxes.
        tp(tf.Tensor): tp vector. elements are int or bool.
        fp(tf.Tensor): fp vector. elements are int or bool.
        score(tf.Tensor): score vector.
        class_name(str): class_name

    Return:
        average precision(tf.Tensor): scalar
        presicion_array(tf.Tensor): vector of presicion.
        recall_array(tf.Tensor): vector of recall.
        presicion(tf.Tensor): scalr of presicion.
        recall(tf.Tensor): scalar of recall.
    """
    # replace non-alpha-num string.
    class_name = re.sub('[^0-9a-zA-Z]+', '_', class_name)

    (tp_value, fp_value, scores_value, num_gt_boxes_value), update_op = \
        _streaming_tp_fp_array(num_gt_boxes, tp, fp, score, class_name,
                               metrics_collections=metrics_collections, updates_collections=updates_collections)

    precision_array, recall_array, precision, recall = \
        _precision_recall(tp_value, fp_value, scores_value, num_gt_boxes_value, class_name)

    average_precision = _average_precision(precision_array, recall_array)

    return tf.tuple([average_precision, precision_array, recall_array, precision, recall]), update_op 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:40,代碼來源:mean_average_precision.py

示例11: _precision_recall

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _precision_recall(
        tp,
        fp,
        scores,
        num_gt_boxes,
        class_name,
        dtype=tf.float64,
        scope=None):
    """Compute precision and recall from scores, true positives and false
    positives booleans arrays
    """
    default_name = 'precision_recall_{}'.format(class_name)
    # Sort by score.
    with tf.compat.v1.name_scope(scope, default_name, [num_gt_boxes, tp, fp, scores]):
        num_detections = tf.size(scores)
        # Sort detections by score.
        scores, idxes = tf.nn.top_k(scores, k=num_detections, sorted=True)
        tp = tf.gather(tp, idxes)
        fp = tf.gather(fp, idxes)
        # Computer recall and precision.
        tp = tf.cumsum(tf.cast(tp, dtype), axis=0)
        fp = tf.cumsum(tf.cast(fp, dtype), axis=0)

        recall = _safe_div_ones(tp, tf.cast(num_gt_boxes, dtype), 'recall')
        precision = _safe_div_zeros(tp, tp + fp, 'precision')

        scalar_precision = tf.cond(
            tf.equal(tf.size(precision), 0),
            true_fn=lambda: tf.constant(0, dtype=dtype),
            false_fn=lambda: precision[-1],
            name="scalar_precision"
        )

        scalar_recall = tf.cond(
            tf.equal(tf.size(recall), 0),
            true_fn=lambda: tf.constant(0, dtype=dtype),
            false_fn=lambda: recall[-1],
            name="scalar_recall"
        )

        return tf.tuple([precision, recall, scalar_precision, scalar_recall]) 
開發者ID:blue-oil,項目名稱:blueoil,代碼行數:43,代碼來源:mean_average_precision.py

示例12: stop_gradient_tuple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def stop_gradient_tuple(self, inputs):
        """ Stop gradients through tf.tuple. """
        for i, _ in enumerate(inputs):
            inputs[i] = tf.stop_gradient(inputs[i])
        return inputs 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:7,代碼來源:faster_rcnn.py

示例13: create_bbox_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def create_bbox_batch(cls, inputs, batch_size=64):
        """ Create batch indices for bboxes. """
        batch = []
        for indices in inputs:
            indices = tf.random_shuffle(indices)
            start = [0] * 2
            size = [tf.minimum(batch_size, tf.shape(indices)[0]), -1]
            sample = tf.slice(indices, start, size)
            sample.set_shape([None, 1])
            batch.append(sample)
        batch = tf.tuple(batch)
        return batch 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:14,代碼來源:faster_rcnn.py

示例14: _get_rois_and_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _get_rois_and_labels(self, rois, labels, indices):
        with tf.variable_scope('get_rois_and_labels'):
            output_rois = []
            output_labels = []
            for i, index in enumerate(indices):
                output_rois.append(tf.gather_nd(rois[i], index))
                output_labels.append(tf.gather_nd(labels[i], index))
            output_rois = tf.tuple(output_rois)
            output_labels = tf.tuple(output_labels)
        return output_rois, output_labels 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:12,代碼來源:faster_rcnn.py

示例15: _unstack_tuple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import tuple [as 別名]
def _unstack_tuple(self, inputs, tensor_sizes):
        size = len(tensor_sizes)
        start_position = tf.constant(0)
        output = []
        dim = len(inputs.get_shape().as_list())-1
        for i in range(size):
            output.append(tf.slice(inputs, begin=[start_position, *([0]*dim)], size=[tensor_sizes[i], *([-1]*dim)]))
            start_position = start_position + tensor_sizes[i]
        return tf.tuple(output) 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:11,代碼來源:faster_rcnn.py


注:本文中的tensorflow.tuple方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。