本文整理匯總了Python中tensorflow.truncated_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.truncated_normal方法的具體用法?Python tensorflow.truncated_normal怎麽用?Python tensorflow.truncated_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.truncated_normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def __init__(self, dims=(0,), scale=2.0, **kwargs):
"""Creates an initializer.
Args:
dims: Dimension(s) index to compute standard deviation:
sqrt(scale / product(shape[dims]))
scale: A constant scaling for the initialization used as
sqrt(scale / product(shape[dims])).
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.
"""
if isinstance(dims, (int, long)):
self._dims = [dims]
else:
self._dims = dims
self._kwargs = kwargs
self._scale = scale
示例2: weight_noise
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def weight_noise(noise_rate, learning_rate, var_list):
"""Apply weight noise to vars in var_list."""
if not noise_rate:
return [tf.no_op()]
tf.logging.info("Applying weight noise scaled by learning rate, "
"noise_rate: %0.5f", noise_rate)
noise_ops = []
for v in var_list:
with tf.device(v._ref().device): # pylint: disable=protected-access
scale = noise_rate * learning_rate * 0.001
tf.summary.scalar("weight_noise_scale", scale)
noise = tf.truncated_normal(v.shape) * scale
noise_op = v.assign_add(noise)
noise_ops.append(noise_op)
return noise_ops
示例3: isemhash_bottleneck
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def isemhash_bottleneck(x, bottleneck_bits, bottleneck_noise,
discretize_warmup_steps, mode,
isemhash_noise_dev=0.5, isemhash_mix_prob=0.5):
"""Improved semantic hashing bottleneck."""
with tf.variable_scope("isemhash_bottleneck"):
x = tf.layers.dense(x, bottleneck_bits, name="dense")
y = common_layers.saturating_sigmoid(x)
if isemhash_noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.truncated_normal(
common_layers.shape_list(x), mean=0.0, stddev=isemhash_noise_dev)
y = common_layers.saturating_sigmoid(x + noise)
d = tf.to_float(tf.less(0.5, y)) + y - tf.stop_gradient(y)
d = 2.0 * d - 1.0 # Move from [0, 1] to [-1, 1].
if mode == tf.estimator.ModeKeys.TRAIN: # Flip some bits.
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
d *= noise
d = common_layers.mix(d, 2.0 * y - 1.0, discretize_warmup_steps,
mode == tf.estimator.ModeKeys.TRAIN,
max_prob=isemhash_mix_prob)
return d, 0.0
示例4: dense_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def dense_layer(x, in_dim, out_dim, layer_name, act):
"""Creates a single densely connected layer of a NN"""
with tf.name_scope(layer_name):
# layer weights corresponding to the input / output dimensions
weights = tf.Variable(
tf.truncated_normal(
[in_dim, out_dim],
stddev=1.0 / tf.sqrt(float(out_dim))
), name="weights"
)
# layer biases corresponding to output dimension
biases = tf.Variable(tf.zeros([out_dim]), name="biases")
# layer activations applied to Wx+b
layer = act(tf.matmul(x, weights) + biases, name="activations")
return layer
示例5: conv_pool_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def conv_pool_layer(x, in_channels, out_channels, layer_name):
"""Creates a single convpool layer of a NN"""
with tf.name_scope(layer_name):
# layer weights corresponding to the input / output channels
weights = tf.Variable(tf.truncated_normal([5, 5, in_channels, out_channels], stddev=0.1))
# layer biases corresponding to output channels
biases = tf.Variable(tf.constant(0.1, shape=[out_channels]))
# convolution layer: convolving inputs with the weights and applying ReLU
conv = tf.nn.relu(tf.nn.conv2d(x, weights, strides=[1, 1, 1, 1], padding='SAME') + biases)
# max-pooling layer: pooling convolutions (after applying ReLU) by 2x2 windows
pool = tf.nn.max_pool(conv, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
return pool
# PREPARING DATA
# downloading (on first run) and extracting MNIST data
示例6: dense_layer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def dense_layer(x, in_dim, out_dim, layer_name, act):
"""Creates a single densely connected layer of a NN"""
with tf.name_scope(layer_name):
# layer weights corresponding to the input / output dimensions
weights = tf.Variable(
tf.truncated_normal(
[in_dim, out_dim],
stddev=1.0 / tf.sqrt(float(out_dim))
), name="weights"
)
# layer biases corresponding to output dimension
biases = tf.Variable(tf.zeros([out_dim]), name="biases")
# layer activations applied to Wx+b
layer = act(tf.matmul(x, weights) + biases, name="activations")
return layer
# PREPARING DATA
# downloading (on first run) and extracting MNIST data
示例7: conv_den
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def conv_den(x, dendrites, out_channels, variances=[1., 1., 2.], width=11, data_format="NHWC"):
if data_format not in ["NHWC", "NCHW"]:
raise ValueError("data_format must be \"NHWC\" or \"NCHW\".")
if data_format == "NHWC":
raise NotImplementedError("data_format \"NHWC\" is not yet implemented!")
shape = x.shape.as_list()
depth = shape[1]
positions_height = tf.Variable(initial_value=tf.truncated_normal([dendrites], stddev=(width - 3) / 4.), name="dendrite_height", dtype=tf.float32)
positions_width = tf.Variable(initial_value=tf.truncated_normal([dendrites], stddev=(width - 3) / 4.), name="dendrite_width", dtype=tf.float32)
positions_depth = tf.Variable(initial_value=tf.abs(tf.truncated_normal([dendrites], stddev=(depth - 2) / 2.)) + 0.5, name="dendrite_depth", dtype=tf.float32)
positions = [positions_height, positions_width, positions_depth]
weights = weight_variable([out_channels, dendrites], name="weights")
bias = bias_variable([out_channels, 1, 1], name="biases")
output = dendrite_layer(x, positions, weights, variances=[1., 1., 2.], width=11, data_format=data_format)
return tf.nn.relu(output + bias, name="relu")
示例8: weight_variable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def weight_variable(shape, stddev=0.1, name=None):
"""
Creates a weight variable initialized with a truncated normal distribution.
Parameters
----------
shape: list or tuple of ints
The shape of the weight variable.
stddev: float
The standard deviation of the truncated normal distribution.
name : string
The name of the variable in TensorFlow.
Returns
-------
weights: TF variable
The weight variable.
"""
return tf.Variable(initial_value=tf.truncated_normal(shape, stddev=stddev),
name=name,
dtype=tf.float32)
示例9: build
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def build(self):
# Create target inputs
self.label_placeholder = tf.placeholder(
dtype='float32', shape=(None, self.n_tasks), name="label_placeholder")
self.weight_placeholder = tf.placeholder(
dtype='float32', shape=(None, self.n_tasks), name="weight_placholder")
feat = self.model.return_outputs()
feat_size = feat.get_shape()[-1].value
outputs = []
for task in range(self.n_tasks):
outputs.append(
tf.squeeze(
model_ops.fully_connected_layer(
tensor=feat,
size=1,
weight_init=tf.truncated_normal(
shape=[feat_size, 1], stddev=0.01),
bias_init=tf.constant(value=0., shape=[1]))))
return outputs
示例10: sample_encoded_context
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def sample_encoded_context(self, embeddings):
'''Helper function for init_opt'''
c_mean_logsigma = self.model.generate_condition(embeddings)
mean = c_mean_logsigma[0]
if cfg.TRAIN.COND_AUGMENTATION:
# epsilon = tf.random_normal(tf.shape(mean))
epsilon = tf.truncated_normal(tf.shape(mean))
stddev = tf.exp(c_mean_logsigma[1])
c = mean + stddev * epsilon
kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
else:
c = mean
kl_loss = 0
return c, cfg.TRAIN.COEFF.KL * kl_loss
示例11: sample_encoded_context
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def sample_encoded_context(self, embeddings):
'''Helper function for init_opt'''
# Build conditioning augmentation structure for text embedding
# under different variable_scope: 'g_net' and 'hr_g_net'
c_mean_logsigma = self.model.generate_condition(embeddings)
mean = c_mean_logsigma[0]
if cfg.TRAIN.COND_AUGMENTATION:
# epsilon = tf.random_normal(tf.shape(mean))
epsilon = tf.truncated_normal(tf.shape(mean))
stddev = tf.exp(c_mean_logsigma[1])
c = mean + stddev * epsilon
kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1])
else:
c = mean
kl_loss = 0
# TODO: play with the coefficient for KL
return c, cfg.TRAIN.COEFF.KL * kl_loss
示例12: setupRNN
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def setupRNN(self):
""" Create RNN layers and return output of these layers """
# Collapse layer to remove dimension 100 x 1 x 512 --> 100 x 512 on axis=2
rnnIn3d = tf.squeeze(self.cnnOut4d, axis=[2])
# 2 layers of LSTM cell used to build RNN
numHidden = 512
cells = [tf.contrib.rnn.LSTMCell(
num_units=numHidden, state_is_tuple=True, name='basic_lstm_cell') for _ in range(2)]
stacked = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)
# Bi-directional RNN
# BxTxF -> BxTx2H
((forward, backward), _) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=stacked, cell_bw=stacked, inputs=rnnIn3d, dtype=rnnIn3d.dtype)
# BxTxH + BxTxH -> BxTx2H -> BxTx1X2H
concat = tf.expand_dims(tf.concat([forward, backward], 2), 2)
# Project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC
kernel = tf.Variable(tf.truncated_normal(
[1, 1, numHidden * 2, len(self.charList) + 1], stddev=0.1))
self.rnnOut3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'), axis=[2])
開發者ID:sushant097,項目名稱:Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow,代碼行數:24,代碼來源:Model.py
示例13: weight_noise
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def weight_noise(noise_rate, learning_rate, var_list):
"""Apply weight noise to vars in var_list."""
if not noise_rate:
return [tf.no_op()]
tf.logging.info("Applying weight noise scaled by learning rate, "
"noise_rate: %0.5f", noise_rate)
noise_ops = []
for v in var_list:
with tf.device(v.device): # pylint: disable=protected-access
scale = noise_rate * learning_rate * 0.001
if common_layers.should_generate_summaries():
tf.summary.scalar("weight_noise_scale", scale)
noise = tf.truncated_normal(v.shape) * scale
noise_op = v.assign_add(noise)
noise_ops.append(noise_op)
return noise_ops
示例14: tanh_discrete_bottleneck
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise,
discretize_warmup_steps, mode):
"""Simple discretization through tanh, flip bottleneck_noise many bits."""
x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck")
d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0
if mode == tf.estimator.ModeKeys.TRAIN:
x += tf.truncated_normal(
common_layers.shape_list(x), mean=0.0, stddev=0.2)
x = tf.tanh(x)
d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
if mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
d *= noise
d = common_layers.mix(d, x, discretize_warmup_steps,
mode == tf.estimator.ModeKeys.TRAIN)
return d, d0
示例15: _weight_variable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import truncated_normal [as 別名]
def _weight_variable(shape,name=None):
"""weight_variable generates a weigh t variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.01)+0.01
return tf.Variable(initial,name=name)