當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.transform方法代碼示例

本文整理匯總了Python中tensorflow.transform方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.transform方法的具體用法?Python tensorflow.transform怎麽用?Python tensorflow.transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.transform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_analyze_input_columns

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def get_analyze_input_columns(preprocessing_fn, specs):
  """Return columns that are required inputs of `AnalyzeDataset`.

  Args:
    preprocessing_fn: A tf.transform preprocessing_fn.
    specs: A dict of feature name to feature specification or tf.TypeSpecs.

  Returns:
    A list of columns that are required inputs of analyzers.
  """

  with tf.compat.v1.Graph().as_default() as graph:
    input_signature = impl_helper.batched_placeholders_from_specs(
        specs)
    _ = preprocessing_fn(input_signature.copy())

    tensor_sinks = graph.get_collection(analyzer_nodes.TENSOR_REPLACEMENTS)
    visitor = _SourcedTensorsVisitor()
    for tensor_sink in tensor_sinks:
      nodes.Traverser(visitor).visit_value_node(tensor_sink.future)

    analyze_input_tensors = graph_tools.get_dependent_inputs(
        graph, input_signature, visitor.sourced_tensors)
    return list(analyze_input_tensors.keys()) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:26,代碼來源:inspect_preprocessing_fn.py

示例2: get_transform_input_columns

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def get_transform_input_columns(preprocessing_fn, specs):
  """Return columns that are required inputs of `TransformDataset`.

  Args:
    preprocessing_fn: A tf.transform preprocessing_fn.
    specs: A dict of feature name to feature specification or tf.TypeSpecs.

  Returns:
    A list of columns that are required inputs of the transform `tf.Graph`
    defined by `preprocessing_fn`.
  """
  with tf.compat.v1.Graph().as_default() as graph:
    input_signature = impl_helper.batched_placeholders_from_specs(
        specs)
    output_signature = preprocessing_fn(input_signature.copy())
    transform_input_tensors = graph_tools.get_dependent_inputs(
        graph, input_signature, output_signature)
    return list(transform_input_tensors.keys()) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:20,代碼來源:inspect_preprocessing_fn.py

示例3: encode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def encode(self, instance):
    """Encode a tf.transform encoded dict as tf.Example."""
    # The feature handles encode using the self._encode_example_cache.
    for feature_handler in self._feature_handlers:
      value = instance[feature_handler.name]
      try:
        feature_handler.encode_value(value)
      except TypeError as e:
        raise TypeError('%s while encoding feature "%s"' %
                        (e, feature_handler.name))

    if self._serialized:
      return self._encode_example_cache.SerializeToString()

    result = tf.train.Example()
    result.CopyFrom(self._encode_example_cache)
    return result 
開發者ID:tensorflow,項目名稱:transform,代碼行數:19,代碼來源:example_proto_coder.py

示例4: _example_serving_receiver_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def _example_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving in inputs.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:24,代碼來源:taxi_utils.py

示例5: _flat_input_serving_receiver_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def _flat_input_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving function for flat list of Dense tensors as input.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  # We construct a receiver function that receives flat list of Dense tensors as
  # features. This is as per BigQuery ML serving requirements.
  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.features) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:26,代碼來源:taxi_utils_bqml.py

示例6: _example_serving_receiver_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def _example_serving_receiver_fn(transform_output, schema):
  """Build the serving in inputs.

  Args:
    transform_output: directory in which the tf-transform model was written
      during the preprocessing step.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  _, transformed_features = (
      saved_transform_io.partially_apply_saved_transform(
          os.path.join(transform_output, transform_fn_io.TRANSFORM_FN_DIR),
          serving_input_receiver.features))

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors) 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:27,代碼來源:taxi_utils_slack.py

示例7: encode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def encode(self, instance):
    """Encode a tf.transform encoded dict to a csv-formatted string.

    Args:
      instance: A python dictionary where the keys are the column names and
        the values are fixed len or var len encoded features.

    Returns:
      A csv-formatted string. The order of the columns is given by column_names.
    """
    string_list = [None] * len(self._column_names)
    for feature_handler in self._feature_handlers:
      try:
        feature_handler.encode_value(string_list,
                                     instance[feature_handler.name])
      except TypeError as e:
        raise TypeError('%s while encoding feature "%s"' %
                        (e, feature_handler.name))
    return self._encoder.encode_record(string_list)

  # Please run tensorflow_transform/coders/benchmark_coders_test.py
  # if you make any changes on these methods. 
開發者ID:amygdala,項目名稱:code-snippets,代碼行數:24,代碼來源:mcsv_coder.py

示例8: preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def preprocess(inputs):
    """tf.transform's callback function for preprocessing inputs.
    Args:
      inputs: map from feature keys to raw not-yet-transformed features.
    Returns:
      Map from string feature key to transformed feature operations.
    """
    outputs = {}
    for key in DENSE_FLOAT_FEATURE_KEYS:
        # Preserve this feature as a dense float, setting nan's to the mean.
        outputs[key] = transform.scale_to_z_score(inputs[key])

    for key in VOCAB_FEATURE_KEYS:
        # Build a vocabulary for this feature.
        if inputs[key].dtype == tf.string:
            vocab_tensor = inputs[key]
        else:
            vocab_tensor = tf.as_string(inputs[key])
        outputs[key] = transform.string_to_int(
            vocab_tensor, vocab_filename='vocab_' + key,
            top_k=VOCAB_SIZE, num_oov_buckets=OOV_SIZE)

    for key in BUCKET_FEATURE_KEYS:
        outputs[key] = transform.bucketize(inputs[key], FEATURE_BUCKET_COUNT)

    for key in CATEGORICAL_FEATURE_KEYS:
        outputs[key] = tf.to_int64(inputs[key])

    taxi_fare = inputs[FARE_KEY]
    taxi_tip = inputs[LABEL_KEY]
    # Test if the tip was > 20% of the fare.
    tip_threshold = tf.multiply(taxi_fare, tf.constant(0.2))
    outputs[LABEL_KEY] = tf.logical_and(
        tf.logical_not(tf.is_nan(taxi_fare)),
        tf.greater(taxi_tip, tip_threshold))

    return outputs 
開發者ID:kubeflow-kale,項目名稱:kale,代碼行數:39,代碼來源:preprocessing.py

示例9: transform_features_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def transform_features_layer(self):
    """Creates a `TransformFeaturesLayer` from this transform output.

    If a `TransformFeaturesLayer` has already been created for self, the same
    one will be returned.

    Returns:
      A `TransformFeaturesLayer` instance.
    """
    if self._transform_features_layer is None:
      self._transform_features_layer = TransformFeaturesLayer(self)
    return self._transform_features_layer 
開發者ID:tensorflow,項目名稱:transform,代碼行數:14,代碼來源:output_wrapper.py

示例10: load_transform_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def load_transform_graph(self):
    """Load the transform graph without replacing any placeholders.

    This is necessary to ensure that variables in the transform graph are
    included in the training checkpoint when using tf.Estimator.  This should
    be called in the training input_fn.
    """
    saved_transform_io.partially_apply_saved_transform_internal(
        self.transform_savedmodel_dir, {}) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:11,代碼來源:output_wrapper.py

示例11: raw_metadata

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def raw_metadata(self):
    """A DatasetMetadata.

    Note: raw_metadata is not guaranteed to exist in the output of tf.transform
    and hence using this could fail, if raw_metadata is not present in
    TFTransformOutput.

    Returns:
      A DatasetMetadata
    """
    if self._raw_metadata is None:
      self._raw_metadata = metadata_io.read_metadata(
          os.path.join(self._transform_output_dir, self.RAW_METADATA_DIR))
    return self._raw_metadata 
開發者ID:tensorflow,項目名稱:transform,代碼行數:16,代碼來源:output_wrapper.py

示例12: post_transform_statistics_path

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def post_transform_statistics_path(self):
    """Returns the path to the post-transform datum statistics.

    Note: post_transform_statistics is not guaranteed to exist in the output of
    tf.transform and hence using this could fail, if post_transform statistics
    is not present in TFTransformOutput.
    """
    return os.path.join(
        self._transform_output_dir, self.POST_TRANSFORM_FEATURE_STATS_PATH)


# TODO(zoyahav): Use register_keras_serializable directly once we no longer support
# TF<2.1. 
開發者ID:tensorflow,項目名稱:transform,代碼行數:15,代碼來源:output_wrapper.py

示例13: get_analysis_dataset_keys

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def get_analysis_dataset_keys(
    preprocessing_fn, specs, dataset_keys, input_cache):
  """Computes the dataset keys that are required in order to perform analysis.

  Args:
    preprocessing_fn: A tf.transform preprocessing_fn.
    specs: A dict of feature name to feature specification or tf.TypeSpecs.
    dataset_keys: A set of strings which are dataset keys, they uniquely
      identify these datasets across analysis runs.
    input_cache: A cache dictionary.

  Returns:
    A set of dataset keys that are required for analysis.
  """
  transform_fn_future, _ = _build_analysis_graph_for_inspection(
      preprocessing_fn, specs, dataset_keys, input_cache)

  result = set()
  inspect_visitor = _InspectVisitor(result)
  inspect_traverser = nodes.Traverser(inspect_visitor)
  _ = inspect_traverser.visit_value_node(transform_fn_future)

  # If None is present this means that a flattened version of the entire dataset
  # is required, therefore this will be returning all of the given dataset_keys.
  if any(k.is_flattened_dataset_key() for k in result):
    result = dataset_keys
  return result 
開發者ID:tensorflow,項目名稱:transform,代碼行數:29,代碼來源:analysis_graph_builder.py

示例14: get_analysis_cache_entry_keys

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def get_analysis_cache_entry_keys(preprocessing_fn, feature_spec, dataset_keys):
  """Computes the cache entry keys that would be useful for analysis.

  Args:
    preprocessing_fn: A tf.transform preprocessing_fn.
    feature_spec: A dict of feature name to feature specification.
    dataset_keys: A set of strings which are dataset keys, they uniquely
      identify these datasets across analysis runs.

  Returns:
    A set of cache entry keys which would be useful for analysis.
  """
  _, cache_dict = _build_analysis_graph_for_inspection(
      preprocessing_fn, feature_spec, dataset_keys, {})
  return set([cache_key for _, cache_key in cache_dict.keys()]) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:17,代碼來源:analysis_graph_builder.py

示例15: decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import transform [as 別名]
def decode(self, example_proto):
    """Decode tf.Example as a tf.transform encoded dict."""
    if self._serialized:
      example = self._decode_example_cache
      example.ParseFromString(example_proto)
    else:
      example = example_proto

    feature_map = example.features.feature
    return {feature_handler.name: feature_handler.parse_value(feature_map)
            for feature_handler in self._feature_handlers} 
開發者ID:tensorflow,項目名稱:transform,代碼行數:13,代碼來源:example_proto_coder.py


注:本文中的tensorflow.transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。